Egysejt-fehérje előállítása állati takarmányozáshoz fermentációs biotechnológiával

Main Article Content

Molnár Judit
David Vasas
Renátó Kalocsai
Tamás Szakál
Mukhtar H. Ahmed

Abstract

Háttérinformáció: A fermentáció egyfajta biotechnológia, amely mikroorganizmusok kémiai folyamatait használ állati táplálék előállítására. A régi időkben a hulladékokat vegyszerekkel kezelték, napjainkban viszont a vállalkozások a hulladékokat értékes élelmiszerekké, élelmiszer-összetevőkké vagy takarmánytermékekké például egysejt-olajokká, vagy egysejtfehérjékké alakítják át. A leggyakrabban használt szubsztrátum a melasz és a kukoricaáztató lúg, amelyek a fermentációs folyamat részei. Cél: Kéziratunk megírásának célja az, hogy áttekintést adjon az egysejt-fehérjék (single cell proteins – SCP) fermentációs eljárással történő előállításához felhasznált élesztőtörzsekről és élelmiszer-melléktermékekről. Ezen túlmenően a dolgozat összefoglalja az egysejt-fehérjék szerepét az állati takarmányban. Módszerek: A cikk anyagához a Google Scholar Medline és PubMed adatbázisában elektronikus keresést végeztünk. További keresést végeztünk az Élelmiszer- és Mezőgazdasági Világszervezet, a FAO kutatási cikkadatbázisában. Eredmények: A fentebb említett szubsztrátok és a különböző mikroorganizmusok (algák, élesztő, baktériumok) által termelt egysejt-fehérjék fontos szerepet játszanak az állati takarmányozásban. Ezenkívül az SCP-k kiváló minőségű fehérje-, telítetlen zsírsav-, vitamin- és ásványianyag-források az állatok számára. Következtetés: Az egysejt-fehérje fermentációval történő előállítása számos jelentős előnnyel jár, beleértve a fenntarthatóságot, az egészséget és a termelési hatékonyságot.

Downloads

Download data is not yet available.

Article Details

How to Cite
Judit, M., Vasas, D., Kalocsai, R., Szakál, T., & H. Ahmed, M. (2022). Egysejt-fehérje előállítása állati takarmányozáshoz fermentációs biotechnológiával. Journal of Food Investigation, 68(2), 3888–3895. https://doi.org/10.52091/EVIK-2022/2-3-HUN
Section
Articles

References

Ritala A., Häkkinen Suvi T., Toivari M., Wiebe Marilyn G. (2017) Single Cell Protein State of the Art, Industrial Landscape and Patents 2001–2016. Frontiers in Microbiology. 8:1-18. https://doi.org/10.3389/fmicb.2017.02009[2] Dallas D. C., Sanctuary M. R., Qu Y., Khajavi S. H., Van Zandt A. E., Dyandra M., Frese S. A., Barile D., Germal J. B. (2017): Personalizing protein nourishment. Critical Reviews in Food Science and Nutrition. 57(15):3313-3331. https://doi.org/10.1080/10408398.2015.1117412[3] Berg J. M., Tymoczko J. L., Stryer L. (2002): Biochemistry. 5th edition. New York: W H Freeman Section 23.1, Proteins Are Degraded to Amino Acids. Available from: https://www.ncbi.nlm.nih.gov/books/NBK22600/[4] Lopez M. J, Mohiuddin S. S. (2021): Biochemistry, Essential Amino Acids. [Updated 2021 Mar 26]. In: StatPearls [Internet]. Treasure Island (FL): https://www.ncbi.nlm.nih.gov/books/NBK557845/[5] Delimaris I. (2013): Adverse Effects Associated with Protein Intake above the Recommended Dietary Allowance for Adults. ISRN Nutrition. 2013:1-6. https://doi.org/10.5402/2013/126929[6] Benjamin O, Lappin S. L. (2021): Kwashiorkor. Treasure Island (FL): Stat Pearls Publishing, 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507876/[7] Ahmed M., Ahmed W., Byrne J. (2013): Adsorption of Amino Acids Onto Diamond for Biomedical Applications: Deposition, Characterization and the Adsorption Behaviour of Amino Acids on Doped Diamond. KS Omniscriptum Publishing.296. ISBN: 365947360X, 9783659473609[8] Sharif M., Zafar M. H., Aqid A. I., Saeed M., Farag M. R., Alagawany M. (2021): Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture.531:1- 8. https://doi.org/10.1016/j.aquaculture.2020.735885[9] Spalvins K., Zihare L., Blumberga D. (2018): Single cell protein production from waste biomass: comparison of various industrial by-products. Energy Procedia. 147:409-418. https://doi.org/10.1016/j.e g y p r o. 2 018 . 07.111[10] Reihani S. F. S., Khosravi-Darani K. (2019): Influencing factors on single-cell protein production by submerged fermentation: A review. Electronic Journal of Biotechnology. 37:34-40. https://doi.o r g /10 .1016 / j .e j b t . 2 018 .11. 0 0 5[11] Baidhe E., Kigozi J., Mukisa I., Muyanja C., Namubiru L., Kitarikawe B. (2021): Unearthing the potential of solid waste generated along the pineapple drying process line in Uganda: A review. Environmental Challenges. 2:1-11. https://doi.org/10.1016/j.envc.2020.100012[12] Allegue L. D., Puyol D., Melero J. A. (2020): Novel approach for the treatment of the organic fraction of municipal solid waste: Coupling thermal hydrolysis with anaerobic digestion and photo-fermentation. Science of the Total Environment. 714. pp. 1-10. https://doi.org/10.1016/j.scitotenv.2020.136845[13] Buitrago Mora H. M., Pineros M. A., Espinosa Moreno D., Restrepo Restrepo S., Jaramillo Cardona J. E. C., Álvarez Salano Ó. A., Fernandez-Nino M., González Barrios A. F. (2019): Multiscale design of a dairy beverage model composed of Candida utilis single cell protein supplemented with oleic acid. Journal of Dairy Science. 102. pp. 9749-9762. https://doi.org/10.3168/jds.2019-16729[14] Lo C.-A., Chen B. E. (2019): Parental allele-specific protein expression in single cells In vivo. Developmental Biology. 454:66-73. https://doi.org/10.1016/j.ydbio.2019.06.004[15] Mahmoud M. M., Kosikowski F. V. (1982): Alcohol and single Cell Protein Production by Kluyveromyces in Concentrated Whey Permeates with Reduced Ash. Journal of Dairy Science. 65. pp. 2082-2087. https://doi.org/10.3168/jds.S0022-0302(82)82465-X[16] Daghir N. J., Sell J. L. (1981): Amino Acid Limitations of Yeast Single-Cell Protein for Growing Chickens. Poultry Science. 61. pp. 337-344. DOI: https://doi.org/10.3382/ps.0610337[17] El-Samragy Y. A., Zall R. R. (1987): The Influence of Sodium Chloride on the Activity of Yeast in the Production of Single Cell Protein in Whey Permeate. Journal of Dairy Science. 71. pp. 1135-1140. https://doi.org/10.3168/jds.S0022-0302(88)79666-6[18] Anupama, Ravindra P. (2000): Value-added food: Single cell protein. Biotechnology Advances.18. pp. 459-479. https://doi.org/10.1016/S0734-9750(00)00045-8[19] Patelski P., Berlowska J., Dziugan P., Pielechprzybylska K., Balcerek M., Dziekonska U., Kalinowska H. (2015): Utilisation of sugar beet bagasse for the biosynthesis of yeast SCP. Journal of Food Engineering. 167. pp. 32-37. https://doi.org/10.1016/j.jfoodeng.2015.03.031[20] Lee B., Kim J. K. (2001): Production of Candida utilis biomass on molasses in different culture types. Aquacultural Engineering. 25. pp. 111-124. https://doi.org/10.1016/S0144-8609(01)00075-9

Kim J. K., Tak K., Moon J. (1998): A continuous fermentation of Kluyveromyces fragilis for the production of a highly nutritious protein diet. Aquacultural Engineering. 18. pp. 41-49. https://doi.org/10.1016/S0144-8609(98)00021-1[22] Coca M., Barrocal V. M., Lucas S., Gonzálezbenito G., García-Cubero M. T. (2015): Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food and Bioproducts Processing. 94. pp. 306-312. https://doi.org/10.1016/j.fbp.2014.03.012[23] Hanh V., Kim K. (2009): High-Cell-Density Fed-Batch Culture of Saccharomyces cerevisiae KV-25 Using Molasses and Corn Steep Liquor. Journal of Microbiology and biotechnology.19. pp. 1603-1611. DOI: 10.4014/jmb.0907.07027[24] Zepka L. Q., Jacob-Lopes E., Goldbeck R., Souzasoares L. A., Queiroz M. I. (2010): Nutritional evaluation of single-cell protein produced by Aphanothece microscopica Nägeli. Bioresource Technology. 101. pp. 7107-7111. DOI: 10.1016/j.bior tech.2010.04.001[25] Rajoka M. I., Khan S. H., Jabbar M. A., Awan M. S., Hashmi A. S. (2006): Kinetics of batch single cell protein production from rice polishings with Candida utilis in continuously aerated tank reactors. Bioresource Technology. 97. pp. 1934-1941. DOI: 10.1016/j.biortech.2005.08.019[26] Yadav J. S. S., Bezawada J., Ajila C. M., Yan S., Tyagi R. D., Surampalli R. Y. (2014): Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresource Technology. 164. pp. 119-127. https://doi.org/10.1016/j.biortech.2014.04.069[27] De Gregorio, A., Mandalari, G., Arena, N., Nucita, F., Tripodo, M. M., Lo Curto, R. B. (2002): SCP and crude pectinase production by slurry-state fermentation of lemon pulps. Bioresource Technology. 83. pp. 89-94. https://doi.org/10.1016/S0960-8524(01)00209-7[28] Lo Curto, R. B., Tripodo M. M. (2001): Yeast production from virgin grape marc. Bioresource Technology. 78. pp. 5-9. DOI:10.1016/s0960-8524(00)00175-9[29] Fontana J. D., Czeczuga B., Bonfim T. M. B., Chociai M. B., Oliveira B. H., Guimaraes M. F., Baron M. (1996): Bioproduction of carotenoids: the comparative use of raw sugarcane juice and depolymerized bagasse by Phaffia Rhodozyma. Bioresource Technology. 58. pp. 121-125. https://doi.org/10.1016/S0960-8524(96)00092-2[30] Socas-Rodríguez B., Álvarez-Rivera G., Valdés A., Ibánez E. (2021): Food by-products and food wastes: are they safe enough for their valorization? Trends in Food Science & Technology. 114. pp. 13 3 -147. https://doi.org/10.1016/j.tifs.2021.05.002[31] Amado I. R., Vázquez J. A., Pastrana L., Teixeira J. A. (2017): Microbial production of hyaluronic acid from agro-industrial by-products: Molasses and corn steep liquor. Biochemical Engineering Journal.117. pp. 181-187. https://doi.org/10.1016/j.bej.2016.09.017[32] Palmonari A., Cavallini D., Sniffen C. J., Fernandes L., Holder P., Fagioli L., Fusaro I., Biagi G., Formigoni A., Mammi L. (2020): Short communication: Characterization of molasses chemical composition. Journal of Dairy Science. 103. pp. 6244-6249. DOI: 10.3168/jds.2019-17644[33] Wang J., Chen L., Yuan X.-J., Guo G., Li J.-F., Bai Y.-F., Shao T. (2017): Effects of molasses on the fermentation characteristics of mixed silage prepared with rice straw, local vegetable by-products and alfalfa in Southeast China. Journal of Integrative Agriculture. 16. pp. 664-670. https://doi.org/10.1016/S2095-3119(16)61473-9[34] Sarka E., Bubnik Z., Hinkova A., Gebler J., Kadlec P. (2012): Molasses as a by-product of sugar crystallization and a perspective raw material. Procedia Engineering. 42. pp. 1219-1228. DOI: https://doi.org/10.1016/j.proeng.2012.07.514[35] Chooyok P., Pumijumnog N., Ussawarujikulchai A. (2013): The Water Footprint Assessment of Ethanol Production from Molasses in Kanchanaburi and Supanburi Province of Thailand. APCBEE Procedia. 5. pp. 283-287. DOI: 10.1016/j.apcbee.2013.05.049[36] Siverson A., Vargas-Rodriguez C. F., Bradford B. J. (2014): Short communication: Effects of molasses products on productivity and milk fatty acid profile of cows fed diets high in dried distillers grains with solubles. Journal of dairy Science. 97. pp. 3860-3865. DOI: https://doi.org/10.3168/jds.2014-7902[37] Karigidi K. O., Olaiya C. O. (2020): Antidiabetic activity of corn steep liquor extract of Curculigo pilosa and its solvent fractions in streptozotocin-induced diabetic rats. Journal of Traditional and Complementery Medicine. 10. pp. 555-564. https://doi.org/10.1016/j.jtcme.2019.06.005[38] Li X., Xu W., Yang J., Zhao H., Xin H., Zhang Y. (2016): Effect of different levels of corn steep liquor addition on fermentation characteristics and aerobic stability of fresh rice straw silage. Animal Nutrition. 2. pp. 345-350. DOI: https://doi.org/10.1016/j.aninu.2016.09.003

Waldroup P. W., Hazen K. R. (1979): Examination of Corn Dried Steep Liquor Concentrate and Various Feed Additives as Potential Sources of a Haugh Unit Improvement Factor for Laying Hens. Poultry Science. 58. pp. 580-586. https://doi.org/10.3382/ps.0580580[40] Kennedy H. E., Speck M. L. (1955): Studies on Corn Steep Liquor in the Nutrition of Certain Lactic Acid Bacteria. Journal of Dairy Science. 38. https://doi.org/10.3168/jds.S0022-0302(55)94960-2[41] Cardinal B. E. V., Hedrick L. R. (1948): Microbiological assay of corn steep liquor for amino acid content. Journal of Biological Chemistry. pp. 609-612. (https://www.jbc.org/article/S0021-9258(19)52747-8/pdf)[42] Jones S. W., Karpol A., Friedman S., Maru B. T., Tracy B. P. (2020): Recent advances in single cell protein use as a feed ingredient in aquaculture. Current opinion in Biotechnology. 61. pp. 189-197. https://doi.org/10.1016/j.copbio.2019.12.026[43] Yang P., Li X., Song B., He M., Wu C., Leng X. (2021): The potential of Clostridium autoethanogenum, a new single cell protein, in substituting fish meal in the diet of largemouth bass (Micropterus salmoides): Growth, feed utilization and intestinal histology. Aquaculture and Fisheries. pp. 1-9. https://doi.org/10.1016/j.aaf.2021.03.003[44] Claypool D. W., Church D. C. (1984): Single Cell Protein from Wood Pulp Waste as a Feed Supplement for Lactating Cows. Journal of Dairy Science. 67:216-218. https://doi.org/10.3168/jds.S0022-0302(84)81287-4[45] Waldroup P. W., Payne J. R. (1974): Feeding Value of Methanol-Derived Single Cell Protein for Broiler Chicks. Poultry Science. 53:1039-1042. DOI: https://doi.org/10.3382/ps.0531039[46] Olsen M. A., Vhile S. G., Porcellato D., Kidane A., Skeie S. B. (2021): Feeding concentrates with different protein sources to high-yielding, mid-lactation Norwegian Red cows: Effect on cheese ripening. Journal of Dairy Science. 104: 4062-4073. https://doi.org/10.3168/jds.2020-19226[47] Jin S.-E., Lee S. J., Kim Y., Park C.-Y. (2020): Spirulina powder as a feed supplement to enhance abalone growth. Aquaculture Reports. 17:1-8. https://doi.org/10.1016/j.aqrep.2020.100318