Production of Single Cell Protein by the fermentation biotechnology for Animal Feeding

Main Article Content

Judit Molnár
Vasas David
Kalocsai Renátó
Szakál Tamás
Mukhtar H. Ahmed

Absztrakt

Background: Fermentation is a sort of biotechnology that uses microorganisms to produce animal food through chemical process. In ancient times, wastes were treated with chemicals, but now companies convert wastes to valuable food, food ingredients or feed products such as single cell oils or single cell protein. The most used substrate is molasses and corn steep liquor which is a part of the fermentation process. Aim: The aims of the manuscript is to provide an overview of the yeast strains and food by-products used in production of single cell proteins by fermentation process. Furthermore, the manuscript summarizes the role of single cell protein in animal feed. Methods: Electronic searches were conducted on Google Scholar database Medline and PubMed. A further search was conducted on the Food and agricultural organisation FAO research article database. Results: Single cell protein produced by these substrates and different microorganisms (algae, yeast, bacteria) play an important role in animal feeding. Furthermore, SCP is a high-quality protein, unsaturated fatty acids, vitamins and minerals sources for animals. Conclusion: Production of single cell of protein through the fermentation has several significant benefits including sustainability, health and production efficacy.

Article Details

Hogyan kell idézni
Molnár, J., Vasas, D., Kalocsai, R., Szakál, T., & H. Ahmed, M. (2022). Production of Single Cell Protein by the fermentation biotechnology for Animal Feeding. Élelmiszervizsgálati Közlemények, 68(2), 3896–3903. https://doi.org/10.52091/EVIK-2022/2-3-ENG
Folyóirat szám
Rovat
Tanulmányok

Hivatkozások

Ritala A., Häkkinen Suvi T., Toivari M., Wiebe Marilyn G. (2017) Single Cell Protein State of the Art, Industrial Landscape and Patents 2001–2016. Frontiers in Microbiology. 8:1-18. https://doi.org/10.3389/fmicb.2017.02009[2] Dallas D. C., Sanctuary M. R., Qu Y., Khajavi S. H., Van Zandt A. E., Dyandra M., Frese S. A., Barile D., Germal J. B. (2017): Personalizing protein nourishment. Critical Reviews in Food Science and Nutrition. 57(15):3313-3331. https://doi.org/10.1080/10408398.2015.1117412[3] Berg J. M., Tymoczko J. L., Stryer L. (2002): Biochemistry. 5th edition. New York: W H Freeman Section 23.1, Proteins Are Degraded to Amino Acids. Available from: https://www.ncbi.nlm.nih.gov/books/NBK22600/[4] Lopez M. J, Mohiuddin S. S. (2021): Biochemistry, Essential Amino Acids. [Updated 2021 Mar 26]. In: StatPearls [Internet]. Treasure Island (FL): https://www.ncbi.nlm.nih.gov/books/NBK557845/[5] Delimaris I. (2013): Adverse Effects Associated with Protein Intake above the Recommended Dietary Allowance for Adults. ISRN Nutrition. 2013:1-6. https://doi.org/10.5402/2013/126929[6] Benjamin O, Lappin S. L. (2021): Kwashiorkor. Treasure Island (FL): Stat Pearls Publishing, 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507876/[7] Ahmed M., Ahmed W., Byrne J. (2013): Adsorption of Amino Acids Onto Diamond for Biomedical Applications: Deposition, Characterization and the Adsorption Behaviour of Amino Acids on Doped Diamond. KS Omniscriptum Publishing.296. ISBN: 365947360X, 9783659473609[8] Sharif M., Zafar M. H., Aqid A. I., Saeed M., Farag M. R., Alagawany M. (2021): Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture.531:1- 8. https://doi.org/10.1016/j.aquaculture.2020.735885[9] Spalvins K., Zihare L., Blumberga D. (2018): Single cell protein production from waste biomass: comparison of various industrial by-products. Energy Procedia. 147:409-418. https://doi.org/10.1016/j.e g y p r o. 2 018 . 07.111[10] Reihani S. F. S., Khosravi-Darani K. (2019): Influencing factors on single-cell protein production by submerged fermentation: A review. Electronic Journal of Biotechnology. 37:34-40. https://doi.o r g /10 .1016 / j .e j b t . 2 018 .11. 0 0 5[11] Baidhe E., Kigozi J., Mukisa I., Muyanja C., Namubiru L., Kitarikawe B. (2021): Unearthing the potential of solid waste generated along the pineapple drying process line in Uganda: A review. Environmental Challenges. 2:1-11. https://doi.org/10.1016/j.envc.2020.100012[12] Allegue L. D., Puyol D., Melero J. A. (2020): Novel approach for the treatment of the organic fraction of municipal solid waste: Coupling thermal hydrolysis with anaerobic digestion and photo-fermentation. Science of the Total Environment. 714. pp. 1-10. https://doi.org/10.1016/j.scitotenv.2020.136845[13] Buitrago Mora H. M., Pineros M. A., Espinosa Moreno D., Restrepo Restrepo S., Jaramillo Cardona J. E. C., Álvarez Salano Ó. A., Fernandez-Nino M., González Barrios A. F. (2019): Multiscale design of a dairy beverage model composed of Candida utilis single cell protein supplemented with oleic acid. Journal of Dairy Science. 102. pp. 9749-9762. https://doi.org/10.3168/jds.2019-16729[14] Lo C.-A., Chen B. E. (2019): Parental allele-specific protein expression in single cells In vivo. Developmental Biology. 454:66-73. https://doi.org/10.1016/j.ydbio.2019.06.004[15] Mahmoud M. M., Kosikowski F. V. (1982): Alcohol and single Cell Protein Production by Kluyveromyces in Concentrated Whey Permeates with Reduced Ash. Journal of Dairy Science. 65. pp. 2082-2087. https://doi.org/10.3168/jds.S0022-0302(82)82465-X[16] Daghir N. J., Sell J. L. (1981): Amino Acid Limitations of Yeast Single-Cell Protein for Growing Chickens. Poultry Science. 61. pp. 337-344. DOI: https://doi.org/10.3382/ps.0610337[17] El-Samragy Y. A., Zall R. R. (1987): The Influence of Sodium Chloride on the Activity of Yeast in the Production of Single Cell Protein in Whey Permeate. Journal of Dairy Science. 71. pp. 1135-1140. https://doi.org/10.3168/jds.S0022-0302(88)79666-6[18] Anupama, Ravindra P. (2000): Value-added food: Single cell protein. Biotechnology Advances.18. pp. 459-479. https://doi.org/10.1016/S0734-9750(00)00045-8[19] Patelski P., Berlowska J., Dziugan P., Pielechprzybylska K., Balcerek M., Dziekonska U., Kalinowska H. (2015): Utilisation of sugar beet bagasse for the biosynthesis of yeast SCP. Journal of Food Engineering. 167. pp. 32-37. https://doi.org/10.1016/j.jfoodeng.2015.03.031[20] Lee B., Kim J. K. (2001): Production of Candida utilis biomass on molasses in different culture types. Aquacultural Engineering. 25. pp. 111-124. https://doi.org/10.1016/S0144-8609(01)00075-9

Kim J. K., Tak K., Moon J. (1998): A continuous fermentation of Kluyveromyces fragilis for the production of a highly nutritious protein diet. Aquacultural Engineering. 18. pp. 41-49. https://doi.org/10.1016/S0144-8609(98)00021-1[22] Coca M., Barrocal V. M., Lucas S., Gonzálezbenito G., García-Cubero M. T. (2015): Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food and Bioproducts Processing. 94. pp. 306-312. https://doi.org/10.1016/j.fbp.2014.03.012[23] Hanh V., Kim K. (2009): High-Cell-Density Fed-Batch Culture of Saccharomyces cerevisiae KV-25 Using Molasses and Corn Steep Liquor. Journal of Microbiology and biotechnology.19. pp. 1603-1611. DOI: 10.4014/jmb.0907.07027[24] Zepka L. Q., Jacob-Lopes E., Goldbeck R., Souzasoares L. A., Queiroz M. I. (2010): Nutritional evaluation of single-cell protein produced by Aphanothece microscopica Nägeli. Bioresource Technology. 101. pp. 7107-7111. DOI: 10.1016/j.bior tech.2010.04.001[25] Rajoka M. I., Khan S. H., Jabbar M. A., Awan M. S., Hashmi A. S. (2006): Kinetics of batch single cell protein production from rice polishings with Candida utilis in continuously aerated tank reactors. Bioresource Technology. 97. pp. 1934-1941. DOI: 10.1016/j.biortech.2005.08.019[26] Yadav J. S. S., Bezawada J., Ajila C. M., Yan S., Tyagi R. D., Surampalli R. Y. (2014): Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresource Technology. 164. pp. 119-127. https://doi.org/10.1016/j.biortech.2014.04.069[27] De Gregorio, A., Mandalari, G., Arena, N., Nucita, F., Tripodo, M. M., Lo Curto, R. B. (2002): SCP and crude pectinase production by slurry-state fermentation of lemon pulps. Bioresource Technology. 83. pp. 89-94. https://doi.org/10.1016/S0960-8524(01)00209-7[28] Lo Curto, R. B., Tripodo M. M. (2001): Yeast production from virgin grape marc. Bioresource Technology. 78. pp. 5-9. DOI:10.1016/s0960-8524(00)00175-9[29] Fontana J. D., Czeczuga B., Bonfim T. M. B., Chociai M. B., Oliveira B. H., Guimaraes M. F., Baron M. (1996): Bioproduction of carotenoids: the comparative use of raw sugarcane juice and depolymerized bagasse by Phaffia Rhodozyma. Bioresource Technology. 58. pp. 121-125. https://doi.org/10.1016/S0960-8524(96)00092-2[30] Socas-Rodríguez B., Álvarez-Rivera G., Valdés A., Ibánez E. (2021): Food by-products and food wastes: are they safe enough for their valorization? Trends in Food Science & Technology. 114. pp. 13 3 -147. https://doi.org/10.1016/j.tifs.2021.05.002[31] Amado I. R., Vázquez J. A., Pastrana L., Teixeira J. A. (2017): Microbial production of hyaluronic acid from agro-industrial by-products: Molasses and corn steep liquor. Biochemical Engineering Journal.117. pp. 181-187. https://doi.org/10.1016/j.bej.2016.09.017[32] Palmonari A., Cavallini D., Sniffen C. J., Fernandes L., Holder P., Fagioli L., Fusaro I., Biagi G., Formigoni A., Mammi L. (2020): Short communication: Characterization of molasses chemical composition. Journal of Dairy Science. 103. pp. 6244-6249. DOI: 10.3168/jds.2019-17644[33] Wang J., Chen L., Yuan X.-J., Guo G., Li J.-F., Bai Y.-F., Shao T. (2017): Effects of molasses on the fermentation characteristics of mixed silage prepared with rice straw, local vegetable by-products and alfalfa in Southeast China. Journal of Integrative Agriculture. 16. pp. 664-670. https://doi.org/10.1016/S2095-3119(16)61473-9[34] Sarka E., Bubnik Z., Hinkova A., Gebler J., Kadlec P. (2012): Molasses as a by-product of sugar crystallization and a perspective raw material. Procedia Engineering. 42. pp. 1219-1228. DOI: https://doi.org/10.1016/j.proeng.2012.07.514[35] Chooyok P., Pumijumnog N., Ussawarujikulchai A. (2013): The Water Footprint Assessment of Ethanol Production from Molasses in Kanchanaburi and Supanburi Province of Thailand. APCBEE Procedia. 5. pp. 283-287. DOI: 10.1016/j.apcbee.2013.05.049[36] Siverson A., Vargas-Rodriguez C. F., Bradford B. J. (2014): Short communication: Effects of molasses products on productivity and milk fatty acid profile of cows fed diets high in dried distillers grains with solubles. Journal of dairy Science. 97. pp. 3860-3865. DOI: https://doi.org/10.3168/jds.2014-7902[37] Karigidi K. O., Olaiya C. O. (2020): Antidiabetic activity of corn steep liquor extract of Curculigo pilosa and its solvent fractions in streptozotocin-induced diabetic rats. Journal of Traditional and Complementery Medicine. 10. pp. 555-564. https://doi.org/10.1016/j.jtcme.2019.06.005[38] Li X., Xu W., Yang J., Zhao H., Xin H., Zhang Y. (2016): Effect of different levels of corn steep liquor addition on fermentation characteristics and aerobic stability of fresh rice straw silage. Animal Nutrition. 2. pp. 345-350. DOI: https://doi.org/10.1016/j.aninu.2016.09.003

Waldroup P. W., Hazen K. R. (1979): Examination of Corn Dried Steep Liquor Concentrate and Various Feed Additives as Potential Sources of a Haugh Unit Improvement Factor for Laying Hens. Poultry Science. 58. pp. 580-586. https://doi.org/10.3382/ps.0580580[40] Kennedy H. E., Speck M. L. (1955): Studies on Corn Steep Liquor in the Nutrition of Certain Lactic Acid Bacteria. Journal of Dairy Science. 38. https://doi.org/10.3168/jds.S0022-0302(55)94960-2[41] Cardinal B. E. V., Hedrick L. R. (1948): Microbiological assay of corn steep liquor for amino acid content. Journal of Biological Chemistry. pp. 609-612. (https://www.jbc.org/article/S0021-9258(19)52747-8/pdf)[42] Jones S. W., Karpol A., Friedman S., Maru B. T., Tracy B. P. (2020): Recent advances in single cell protein use as a feed ingredient in aquaculture. Current opinion in Biotechnology. 61. pp. 189-197. https://doi.org/10.1016/j.copbio.2019.12.026[43] Yang P., Li X., Song B., He M., Wu C., Leng X. (2021): The potential of Clostridium autoethanogenum, a new single cell protein, in substituting fish meal in the diet of largemouth bass (Micropterus salmoides): Growth, feed utilization and intestinal histology. Aquaculture and Fisheries. pp. 1-9. https://doi.org/10.1016/j.aaf.2021.03.003[44] Claypool D. W., Church D. C. (1984): Single Cell Protein from Wood Pulp Waste as a Feed Supplement for Lactating Cows. Journal of Dairy Science. 67:216-218. https://doi.org/10.3168/jds.S0022-0302(84)81287-4[45] Waldroup P. W., Payne J. R. (1974): Feeding Value of Methanol-Derived Single Cell Protein for Broiler Chicks. Poultry Science. 53:1039-1042. DOI: https://doi.org/10.3382/ps.0531039[46] Olsen M. A., Vhile S. G., Porcellato D., Kidane A., Skeie S. B. (2021): Feeding concentrates with different protein sources to high-yielding, mid-lactation Norwegian Red cows: Effect on cheese ripening. Journal of Dairy Science. 104: 4062-4073. https://doi.org/10.3168/jds.2020-19226[47] Jin S.-E., Lee S. J., Kim Y., Park C.-Y. (2020): Spirulina powder as a feed supplement to enhance abalone growth. Aquaculture Reports. 17:1-8. https://doi.org/10.1016/j.aqrep.2020.100318