Korai aromafelszabadító hatással rendelkező enzimhasználat vizsgálata Furmint szőlőfajta esetében a Tokaji borvidéken
Main Article Content
Absztrakt
A Furmint a Tokaji borvidék legjelentősebb szőlőfajtája. Fontos értéke, hogy a klímaváltozás okozta szőlőnövényre gyakorolt szárazságstresszre kevésbé érzékeny, jól meg tudja tartani a savait, viszont aromaanyagokban hamar elszegényedik, mert nem képződnek a különféle terpénvegyületek. Borászati technológiai megoldást jelenthet korai aromafeltáró enzimek és speciális célra orientált non-Saccharomyces és Saccharomyces kombinált fajélesztők használata, amelyek révén felszabadíthatóvá válnak az aromakomponensek már az erjedés során és gazdagabb, komplexebb ízek alakulhatnak ki az élesztőtörzsek segítségével. Jelen tanulmány az Erbslöh GmbH aromafeltáró enzimkészítményeinek (Trenolin®FastFlow, Trenolin®BouquetPLUS), valamint speciális fajélesztő törzseinek (Oenoferm®Klosterneuburg, Oenoferm®Wild&Pure) Furmint szőlőfajta borának aromaösszetételre gyakorolt hatását mutatja be a Tokaji borvidéken.
Letöltések
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Hivatkozások
Bauer, F.F., Pretorius I.S. (2000): Yeast Stress Response and Fermentation Efficiency: How to Survive the Making of Wine - A Review. South African Journal of Enology and Viticulture, 21(Special Issue):27-51. DOI: https://doi.org/10.21548/21-1-3557
Bene Zs. (2004): Aszúbogyók élesztő- és penészbiotájának tanulmányozása Tokaj-hegyalján. PhD-értekezés, BCE, Budapest. https://docplayer.hu/5558375-Aszubogyok-eleszto-espeneszbiotajanak-tanulmanyozasa-tokaj-hegyaljan-doktori-ertekezes-bene-zsuzsanna.html
Bene Zs. (2020): Héjon erjesztett Furmint borok polifenol összetétele. Szőlő-levél 10(2):63-76. https://ww.szolo-level.hu/Szolo-level_tavaszi_kiadvány_2020
Bene Zs. (2023): Borászati fajélesztők fenolsav termelésének vizsgálata botrítizált alapanyag esetében. Borászati Füzetek 33(4): 29-35.
Bene Zs. (2024): Kutatások a klímaváltozás tükrében. Borászati Füzetek 34(1):26-28.
Bene, Zs. – Kiss, I. (2023): Investigation of using different specified yeasts and early protein stabilization for Tokaji dry wines. Bio Web of Conferences. 68 p.02010 (2023). https://www.bioconferences.org/articles/bioconf/full_html/2023/13/bioconf_oiv2023_02010/bioconf_oiv2023_02010.html
Carro, N.; López, E.; Günata, Z.Y.; Baumes, R.L.; Bayonove, C.L. (1996): Free and glycosidically bound aroma compounds in grape must of four non-floral Vitis vinifera varieties. Analusis (24): 254–258. DOI:https://doi.org/10.3390/biom9120818
Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., Mozina, M., Polajnar, M., Toplak, M., Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar, J., Zitnik, M., Zupan, B. (2013): Orange: Data Mining Toolbox in Python, Journal of Machine Learning Research 14 (2013): 2349−2353.
Fan,W.L.; Xu, Y.; Jiang,W.G.; Li, J.M. (2010): Identification and Quantification of Impact Aroma Compounds in 4 Nonfloral Vids vinifera Varieties Grapes. J. Food Sci. (75)S81–S88. DOI:https://doi.org/10.1111/j.1750-3841.2009.01436.x
Ferreira, V., Lopez, R. (2019):The Actual and Potencial Aroma of Winemaking Grapes. Biomolecules 9(12),818. https://doi.org/10.3390/biom9120818
Gabler, F.M., Smilanick, J. L., Mansour, M., Ramming, D. W., Mackey, B. E. Correlations of morphological, anatomical and chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology, 93: 1263-1273. (2003).
Godelmann, R., Fang, F., Humpfer, E., Schutz, B., Bansbach, M., Schafer, H., Spraul, M. (2013): Targeted and Nontargeted Wine Analysis by H-1 NMR Spectroscopy Combined with Multivariate Statistical Analysis. Differentiation of Important Parameters: Grape Variety, Geographical Origin, Year of Vintage. Journal of Agricultural and Food Chemistry 61 (23) 5610-5619.DOI: https://doi.org/10.1021/jf400800d
Hampel, D.; Robinson, A.L.; Johnson, A.J.; Ebeler, S.E. (2014): Direct hydrolysis and analysis of glycosidically bound aroma compounds in grapes and wines: Comparison of hydrolysis conditions and sample preparation methods. Aust. J. Grape Wine Res. (20):361–377. DOI: https://doi.org/10.1111/ajgw.12087
Kállay M. (1998): Borászati kémia. – Eperjesi, I., Kállay, M., & Magyar, I. (1998): Borászat (Winemaking) Mezőgazda Kiadó, Budapest, pp.309-312.
Kovács, T., Kovácsné, B.O. (2007): Borászati pektinbontó és macerációs enzimek (Rendezőelvek és információk az eligazodáshoz a kaotikussá vált piacon). Borászati Füzetek 17(3):24-27. https://www.kokoferm.hu/resources/docs/Pektin. MKIK-GVI 2015. A klímaváltozás várható gazdasági hatásai Magyarországon 2020-2040 / Expected economic effects of the climatic change in Hungary, 2020-2040. Kézirat. https://www.gvi.hu
Pancerz, M., Kruk, J., Ptaszek, A. (2022): The Effect of Pectin Branching on the Textural and Swelling Properties of Gel Beads Obtained during Continuous External Gelation Process Appl. Sci. 12(14), 7171. https://doi.org/10.3390/app12147171
Ribéreau-Gayon, P., Glories, Y., Maujean, A., Dubourdieu, D. (2006): Handbook of Enology. Volume 2. The Chemistry of Wine. Stabilization and Treatments. 2nd Edition John Wiley and Sons Ltd., New Jersey. ISBN: 978-0-470-01038-9
Rodríguez-Nogales, J.M., Fernández-Fernández, E., Ruipérez, V., Vila-Crespo, J. (2024): Selective Wine Aroma Enhancement through Enzyme Hydrolysis of Glycosidic Precursors. Molecules 29(1), 16. https://doi.org/10.3390/molecules29010016
Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R., Schuhmacher, R. (2010): Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. Journal of Microbiological Methods 81(2):187-93. DOI: https://doi.org/10.1016/j.mimet.2010.03.011
Szendei, G. (2021): Speciális fajélesztőtörzs a klímaváltozás okozta borászati problémák enyhítésére. Szőlő-levél 11(3):77-80. https://ww.szolo-level.hu/Szolo-level_tavaszi_kiadvány_2021