angol-magyar
kétnyelvű tudományos folyóirat
HUN / ENG

Molekuláris biológia, biotechnológia


Héjon erjesztett natúrborok vizsgálata

Cikk letöltése PDF formátumban

Héjon erjesztett natúrborok vizsgálata

DOI

Érkezett: 2022. május – Elfogadva: 2022. július

Szerzők

1 Tokaj-Hegyalja Egyetem, Lorántffy Intézet, Szőlészeti és Borászati Tanszék
2 Pannon Egyetem, Soós Ernő Kutató- Fejlesztő Központ, Víztechnológiai Kutatócsoport

Kulcsszavak

amfora, kvevri, kerámiatojás, organikus termelés, antioxidánsok, NMR-vizsgálat, kvercetin, procianidinek, katechinek, kávésav, p-kumársav, galakturonsav, borostyánkősav, kaftársav, borkősav, almasav, hidroxifahéjsav

1. Összefoglalás

Az ősi fehérborkészítési technológia, a „kvevri” egyre nagyobb figyelmet kap a fogyasztók körében, nemcsak azért, mert egyedi és különleges, hanem azért is, mert a fenntarthatóság, a természetközeliség alapvető jellemzői ennek a borkészítési eljárásnak. Mindezt az is mutatja, hogy a hagyományos agyagedényes, ősi grúz eljárás 2013-ban felkerült az UNESCO emberiség szellemi kulturális örökségeinek listájára, valamint 2020-ban a Nemzetközi Szőlészeti és Borászati Hivatal (OIV) felvette a héjon erjesztett fehérbort a különleges borok kategóriájába. Ez a hullám Magyarországon is jelen van, hiszen a „natúr” bor és „narancsbor”, a 2021-es jogszabályban már megjelentek, mint „Egyéb, korlátozottan használható kifejezések”. A borkészítési eljárás lényege a héjon történő erjesztés és a mikrooxidáció, amelynek edényzete többféle lehet: amfóra vagy kvevri, kerámiatojás, spin-hordó, ennek függvényében változhat a borok kémiai összetétele, valamint az aromakomponensek prekurzor vegyületeinek képződése. A tanulmányban amfora és kerámiatojás edényzet használatából származó, a Tokaji borvidéken készített natúrborok vizsgálatára került sor.

2. Bevezetés

A natúr borkészítési filozófia napjainkra mozgalommá növekedett, számos országban készítőkre és fogyasztóközönségre talált. Filozófiájuk szerint még soha nem használt a borkészítő társadalom ennyi növényvédőszert a szőlőben, ennyi borászati segédanyagot és tartósítószert, mint napjainkban, ami rendkívül káros mind az élővilág, mind a növényvilágra és nem fenntartható gazdálkodások. Vissza kell térni a gyökerekhez, a régmúlt idők borászati gyakorlatához, ahol a borkészítés művészet és lelke van az így készített boroknak, a termőhely szelleme ötvöződik a borász művészi világával. Különösen igaz ez a Dél-Kaukázusban készített amforaborok világára [1].

Ezekkel a termékekkel szemben gyakran felmerülő ellenérv az, hogy egyrészt mikrobiológiailag nem stabilak, hiszen nem történnek olyan technológiai műveletek, amelyek csökkentenék a szőlőről bekerülő és a mustban, borban felszaporodó mikroorganizmusok nagyságrendjét, másrészt nincs megfelelő növényvédelmi tevékenység a szőlőben olyan kórokozókkal szemben (pl. feketerothadás), amelyek megváltozott kémiai összetételt okoznak, illetve mikotoxinokat termelhetnek. További aggályos tényező, hogy a különféle tárolóedények migrációs tulajdonságairól kevés vizsgálati eredmény áll rendelkezésre.

3. Szakirodalmi áttekintés

3.1. A natúrbor fogalma, készítésének sajátosságai

A natúrbor-készítés mozgalmának gyökereit 1978 körül kell keresni, a francia Beaujolais-ban Marcel Lapierre és Julet Chauvet készített először bioszőlőből kén- és adalékmentes borokat [2].

A natúr borokra gyakran használt elnevezések: low-intervention wine („kis beavatkozású” bor), naked wine („meztelen” bor), raw wine („nyers” bor), amelyek a készítés során alkalmazott szabályokra utalnak.

2020. márciusában Charta elnevezéssel a francia Agrárminisztérium, az INAO (Institut national de l’origine et de la qualité – Nemzeti Eredet- és Minőségvédelmi Intézet) és a DGCCRF (Direction générale de la concurrence, de la consommation et de la répression des fraudes – Verseny-, Fogyasztási- és Csalás Elleni Főigazgatóság), a Natúr Borok Szövetségével közösen fogadta el a natúr borok szabályzatát és hivatalosan a „vin méthode nature” elnevezést.

3.1.1. A natúrborok legfontosabb jellemzői:

  1. Minősített organikus (EU vagy Nature&Progrés), vagy legalább az átállás második évében lévő ültetvényről származó szőlőből kell származniuk;
  2. A borkészítésre szánt szőlőt kizárólag kézzel szabad szüretelni;
  3. Kizárólag spontán erjedési folyamatokat alkalmazhatnak,
  4. Tilos adalék-anyagok hozzáadása;
  5. Tilos a szőlő összetételének módosítása (sav-, alkoholnövelés);
  6. Tilosak a „durvának” minősített beavatkozások (pl. szűrés, tangenciális szűrés, villám-pasztörizálás, hőkezelés, fordított ozmózis);
  7. Erjedés előtt és közben tilos kén hozzáadása;
  8. A címkéken a kénhasználattól függően kétféle logót használhatnak a termelők: „kén hozzáadása nélkül” ill. „˂30 mg/l kén hozzáadásával”;
  9. A nem natúrbornak számító tételeknek egyértelműen elkülöníthetőknek kell lenniük (differenciált címkézés) – elkerülve így a fogyasztó megtévesztését [2].

3.2. Héjonerjesztett fehérborok

A natúrborok speciális kategóriája a héjon erjesztett fehérborok, amely gyakran viseli a kvevri-, amfora-, borostyán- és narancsbor nevet. A változó trendek hatására a régi, hagyományos stílusok kezdenek megjelenni a borászok körében is. A héjon erjesztett fehérborok népszerűsége folyamatosan növekszik, hasonlóan, mint a naturális borokra irányuló egyre növekvő kereslet. A narancsborok ezen túlmenően különleges kategóriát képviselnek, hiszen a héjon áztatásnak köszönhetően egyszerre hordozzák a fehérborokra jellemző ízeket a vörösborokra jellemző textúrával és tanninokkal együtt [3]. A fogyasztók különösen kedvelik, amikor a tárolóedényzet speciális aromavilággal gazdagítja a bor ízét, így egyre több borkészítő használ kerámiatojást és amforát. E technológiának Franciaországban, Portugáliában, USA-ban, Olaszországban, Szlovéniában és Ausztriában számos követője van [4, 5, 6, 7, 8]. Eltérő szín (a mélysárgától a borostyánig), megnövekedett polifenol-tartalom [9, 10, 11], illékony vegyületek (vanília, pörkölt mogyoró, dió) képződése [12, 7], minerális jegyek megjelenése [13, 14] a legfontosabb megkülönböztető jegyek.

A héjjal való érintkezés időtartamának különösen fontos szerepe van nemcsak az erjedés, hanem az utána következő érlelés során is. A hosszú héjjal való érintkezési idő elősegíti mind a fenolos, mind az ásványi anyagok beoldódását. A borászati szempontból fontos procianidinek és katechinek a héjban, magban, kocsányban fordulnak elő, az egyszerű fenolok (kávésav, p-kumársav) legnagyobb koncentrációban a bogyóhúsban találhatók. A minél hosszabb idejű héjon áztatás, az alkohol növekvő koncentrációja, valamint az erjedés során folyamatosan növekvő hőmérséklet hatására, a magból a borba kerülő tanninok részaránya is növekszik. Ez a folyamat a fenolos anyagokat tartalmazó sejtek javuló áteresztőképességével és/vagy felrepedésével hozható összefüggésbe. Ha a kierjedt újbort az erjedés befejeződése után még hosszabb ideig tartják héjon, összetételében a magból származó tanninok válnak dominánssá és a polimer pigmentek aránya is megnő [15, 16]. A termőhely [17], a szőlőfajta [18], a tőketerhelés [19], mustok, borok fenolos összetételére gyakorolt hatásával több kutatási eredményt is publikáltak.

A polifenolok közül kiemelkedő jelentősége van a kvercetinnek és a sikiminsavnak. A kvercetin 10-20 mg/l, a sikiminsav pedig 30-50 mg/l mennyiségben található meg fehérborokban. Erre a Nemzetközi Szőlészeti és Borászati Hivatal Bor és Egészség szakbizottságának vezetője, hívta fel a figyelmet, miután a madárinfluenza ellenszereként alkalmazott, a kínai csillagánizs kivonatából készített Tamiflu nevű gyógyszernek is ez a két vegyület a fő hatóanyaga. Ezzel a fehérborok fogyasztásának jótékony hatása is újabb érvet kapott [20].

3.3. Speciális tároló edényzetek

3.3.1. Amfora

Világszerte sokfelé készítik, minden fazekasmester egyedi eljárást és alapanyagot használ fel, sokszor a formavilág is változik. Magyarországon egy hazai fazekas munkái a legelterjedtebbek, amforáinak alapanyaga tűzálló anyag, amelyet saját anyagából készült samottal soványítottak. Tömör, kagylós törésfelületű, alapanyagai színesre égő tűzálló agyagok, amelyek az 1200-1250 °C-os égetés után savnak, lúgnak ellenálló cseréppé alakulnak, amelynek vízfelvétele 4% alatti (1. ábra).

1. ábra. Natúr amfora [21]

Az amforahasználat legfontosabb jellemzői:

  • A fémtartállyal szemben, az amforában mikrooxidáció megy végbe;
  • Amíg a fahordó erőteljes nyomot hagy a borok illatában és ízében, addig az amforákban a szőlőfajta és a terroir jellege érvényesül;
  • Az amforákban a szőlőfajta olyan sajátos tulajdonságai válnak hangsúlyosabbá, amelyet egyébként a konvencionális borkészítési eljárások elfednek (pl. a furmint szőlőfajta gyógynövényes ízvilága);
  • A terrakotta amforák olyan ásványi anyagokból készülnek, amelyek hasonlóak a szőlőtalaj összetételéhez, amelyeket a szőlőtőkék életük folyamán felvehetnek, így a szőlő az erjesztés és érlelés alatt ahhoz hasonló kémiai közegbe kerül, mint amilyenben a tőkén volt; az amforában történő borkészítés így felerősíti a borokban az ásványos jegyeket;
  • Az amfora hatásos hőszigetelő képessége folyamatosan biztosítja, hogy az erjedési folyamat kiegyensúlyozott hőmérsékleti körülmények között menjen végbe.

3.3.2. Kerámiatojás

A kerámiatojás Ausztráliában elterjedt cement anyag alapú, tojásra emlékeztető formájú edényzet. A kertámiatojások gyártói között jó hírnévre tett szert egy ausztrál vállalkozás, amely világszerte értékesíti borerjesztésre és tárolásra alkalmazható termékeit. Az ausztrál edényzetek 11-12 mm falvastagságúak, 675 liter az űrtartalmuk és 180 kg az önsúlyuk. Égetésük 1285 oC-on, 42 órán tart, amely az edény falának különleges mikroporózusos szerkezetét biztosítja. A fordított tojás formája speciális anyagáramlást biztosít, amely a benne tárolt erjedő must előnyös keveredését biztosítja (2. ábra).

2. ábra. Kerámiatojás egy borászatban, Tállyán (Forrás: saját felvétel)

4. Anyag és módszer

4.1. Azonos évjáratú natúrborok összehasonlító elemzése kerámiatojás és agyagamfora használat esetén

A vizsgált borok származására vonatkozó adatokat az 1. táblázat tartalmazza. A Tállyán működő borászatban natúr borkészítési technológiát alkalmaznak a boraik elkészítéséhez. A szőlőterületeik Tállya és Mád határában találhatók 8 dűlőben, Furmint és Hárslevelű fajtákkal, integrált gazdálkodásban foglalkoznak. Törekednek a lehető legkevesebb növényvédő szer felhasználására, felszívódó hatóanyagot egyáltalán nem alkalmaznak. A boraik spontán módon erjednek, nem használnak borászati kezelőanyagot, a borokat kénmentesen készítik és töltik le. Az erjesztéshez a fentebb ismertetett ausztrál kerámiatojásokat használják.

A Furmint egy bodrogkeresztúri pincészetben készült, organikus termelésű szőlőből. Az erjesztést Magyarországról származó fekete agyag amforában (3. ábra) végezték.

3. ábra. Antracit amfora egy tokaji pincészetben (Forrás: saját felvétel)

A Franciaországban található Savoie borvidék egyik jellegzetes fehér szőlőfajtája a Roussette de Savoie amely ampelográfiai tulajdonságait tekintve sok hasonlóságot mutat a Furmint szőlőfajtával. A genetikai vizsgálatok a rokonsági kapcsolatot nem erősítették meg, viszont az elmúlt években az Altesse fajta Európa szerte megjelenik különböző édes borairól híres borvidékeken. Tokajban, a Lencsés-dűlőből származik az alapanyag, amely a Tokaji Borvidék Szőlészeti és Borászati Kutatóintézetében került feldolgozásra és egy agyag-amforában erjedt.

1. táblázat. A vizsgálathoz felhasznált borminták eredete

A kémiai összetétel vizsgálata nagyműszeres analitikával (NMR- Nucleic Magnetic Resonance) történt a Diagnosticum Zrt. Szerencsi laboratóriumában.

H NMR technika [22]: H NMR spektrumok rögzítése 26,85°C-on Bruker AVANCE 400 spectrométerrel és 400’54 ASCEND magnet rendszerrel (Bruker, Karlsruhe, Germany) proton NMR módban, frekvencián of 400.13 MHz. A célzott vizsgálathoz való minta előkészítés és vizsgálati paraméterek a következők voltak: pH állítás pH 3,1-ra automata BTPH rendszerrel, deutérium és tetrametil- szilán adagolása, relaxációs késés 4 s, mintavételi idő 3,98 s, spektrális szélesség: 8223,68 Hz.

Az adatok statisztikai elemzéshez MANOVA és függetlenség vizsgálatot használtunk és az IBM Corp. 2016 SPSS Statistics for Windows, Version 23.0. Armonk, NY (USA) szoftvert.

5. Vizsgálati eredmények

5.1. A kerámiatojásban és az amforában készített natúrborok NMR-vizsgálata

Az eredményeket a 2. táblázat mutatja.

2. táblázat: Az egyes borminták kémiai összetétele és a vonatkozó NMR referencia adatbázis adatai konvencionális módon készített fehérborokhoz hasonlítva

A Bruker BioSpin GmbH adatbázisában szereplő normál fehérbor készítési eljárással készített fehérborok analitikai értékeivel összehasonlítva megállapítható, hogy a vizsgált héjon erjesztett fehérborok alacsonyabb borkősav tartalommal és magasabb citromsav, galakturonsav, borostyánkősav, kaftársav tartalommal rendelkeznek. A borkősav, almasav, citromsav a szőlőből származik, míg a galakturonsav, borostyánkősav az erjedés során képződik. Az eredményekből látható, hogy az erjedés végére a borkősav nagyobb része csökken borkőkiválás formájában, mint egy normál fehér bor esetében és az almasav is elbomolhat a természetes tejsavbaktérium flóra jelenlétének köszönhetően. A sikiminsav, amelynek előnyös élettani hatást tulajdonítanak, inkább fajtajellemzőnek bizonyul, mert csak az Altesse amforabor esetében volt mérhető számottevő koncentráció-különbség a többi bormintához képest. A kaftársav (kaffeoil-borkősav) hidroxifahéjsav származék és a kávésav borkősavval alkotott észtere, a szőlőbogyó húsának egyik legjelentősebb fenolos vegyülete. A hosszabb ideig tartó héjon áztatás és erjedés eredményeképpen a héjon erjesztett fehérborokban magasabb értékek mutathatók ki a normál fehérborokhoz képest, a kerámiatojásokban ötszörös mennyiség volt mérhető. Amennyiben a mustban jelen van redukált glutation (GSH), a kaftársav-orto-kinon elsőként ezzel lép reakcióba, 2-glutationil-kaftársavat (grape reaction product, GRP) képezve. A GRP színtelen, nem reagál polifenol-oxidázzal és nem lép fel barnulás.

Összehasonlítva az amfora- és kerámiatojás borokat NMR analízissel és MANOVA statisztikai módszerrel, az alábbi megállapításokat tettük:

  • Azokat, az egyes bormintákból származó mérési adatokat, amelyek között látszólag sincs különbség, elhagytuk. A többi paramétert csoportonként értékeltük, mivel a MANOVA egyik feltétele, hogy az együtt vizsgált változók száma nem lehet magasabb a megfigyelések számánál (tehát 3-nál, mert ennyi a megfigyelések száma edényzet-típusonként).
  • Ezen felül azonban a változók a többváltozós varianciaanalízis egyéb feltételeinek megfeleltek: a reziduumok normális eloszlásúak és szórásuk homogén két kivétellel, ahol enyhén sérül: fumársav és metilbutanol esetén. Nincs „extreme” vagy „outlier” egy dimenzióban (itt megfelelő csere 4 esetben), és Mahalanobis távolság alapján több dimenzióban sem, a végső csoportok közt nincs multikollinearitás, ezért a fumársavat, a galakturonsavat és a 2-metil- propanolt nem vizsgáltuk külön, mert nem adott volna új, értékelhető eredményt az adott csoportban vizsgált egyéb változókhoz képest.
  • A vizsgált egyértékű, nem magasabb rendű alkoholok (etanol, metanol) mennyiségében nem találtunk a tárolóedény típusától függő eltérést (F(2;3)=2,681;p=0,641).
  • Szőlő eredetű szerves savtartalom (borkősav, almasav, citromsav) esetén együtt vizsgálva nincs jelentős eltérés a borok közt tároló edénytípus szerint (F(2;3)=6,856;p=0,130). Azonban önállóan a borkősavat (F(2;3)=23,115;p<0,05) és almasavat (F(2;3)=36,914;p<0,05) tekintve van eltérés: a kerámia tojásban tárolt borok borkősav tartalma magasabb, almasav tartalma alacsonyabb az amfora tételekhez képest.
  • Az erjedés során képződött szerves savak (tejsav, ecetsav, borostyánkősav) esetén együtt vizsgálva nincs jelentős eltérés a borok közt tároló edénytípus szerint (F(2;3)=2,064;p=0,343). Azonban önállóan a tejsavat (F(2;3)=11,755;p<0,05) és borostyánkősavat (F(2;3)=10,814;p<0,05) tekintve van eltérés: a kerámia tojásban tárolt borok tejsav és borostyánkősav tartalma alacsonyabb az amfora tételekhez képest. A modellen kívül vizsgálva a fumársav mennyisége nem eltérő (t(4)=4,303;p=0,238), a galakturonsav (t(4)=4,303;p<0,05) mennyisége eltér tároló edény szerint, a kerámia tojás esetén alacsonyabb.
  • Az erjedési melléktermékek tekintetében (acetoin, acetaldehid) a tényezőket együttesen vizsgálva szignifikáns eltérést találtunk (F(2;3)=36,718;p<0,05). Az acetaldehid tartalom a kerámia tojásban adódott alacsonyabbnak (F(2;3)=36,718;p<0,05). Ugyanez mondható el az acetoin mennyiségére is, amely a szignifikancia határ közelében volt (F(2;3)=6,852;p=0,059).
  • A magasabb rendű alkoholokat (2,3-butándiol, 2-feniletanol, 3-metil-butanol) együttesen vizsgálva nincs eltérés (F(2;3)=6,826;p=0,130), a butándiol önálló vizsgálata esetén a szignifikancia határon mozog az eredmény (F(2;3)=7,383;p=0,053), a kerámia tojásban adódik alacsonyabbnak.
  • A polifenolok (sikiminsav, trigonelline, kaftársav) együttes vizsgálata során nem mutattunk ki szignifikáns különbséget (F(2;3)=13,606;p=0,069), de a kaftársav mennyisége jelentősen magasabb a kerámia tojásokban, ha értékeit egyedileg értékeltük (F(2;3)=36,977;p<0,05).
  • A prolin mennyiségében függetlenség vizsgálat alapján statisztikailag igazolható eltérést találtunk, a kerámia tojásban alacsonyabb a mennyisége (t(4)=2,770;p<0,05). A szabad aminosavakra jellemző, hogy a borokban közel 50%-ban a prolin van jelen, 10% az arginin részesedése, az amforaborok esetében megmarad ez az arány, azonban a kerámiatojásokban a tokaji borokra jellemző részesedési arányt mutatja (30-25%) [23].

6. Következtetések

A natúr borkészítési technológia egy olyan szemlélet borban való megjelenítése, amely magában hordozza egyrészről készítőjének természetközeli elhivatottságát, másrészről a termőföld sajátosságainak lenyomatát. Nagyon fontos szerepet kap a higiénia, amely nélkül a vegyszermentes technológia alkalmazása lehetetlenné válik. A természetességhez és a fenntarthatósághoz való ragaszkodás indokolhatja a különböző tárolóedények nyújtotta lehetőségek kipróbálását és hozzáadott értékkel ruházza fel az így készített borokat. Minden tárolóedényzet hozzátesz, alakít a bor kémiai összetételén. A piaci pozícionálásban is fontos tényezők lehetnek nemcsak azért, mert különlegesek és egyediek, hanem azért is, mert a hozzájuk fűzött eszmei értékek (a szőlőtermés az anyaföldtől elválva hasonló közegben töltheti be borrá való alakulásának életútját) megkülönböztető jelleggel ruházhatják fel ezeket a bortípusokat.

7. Irodalom

[1] Chichua, D. (2009): Production of wine in Kvevri: History, description, analysis. (Hozzáférés: 27.12.2021)

[2] Geönczeöl A. (2020): Natúrbor – borforradalom, vagy csak egy mellékszál, Agrofórum Extra 86 116-122. (Hozzáférés: 2021.12.27.)

[3] Dara, J. (2020): Orange Wine is Trending for All the Right Reasons. Wine Enthusiast. (Hozzáférés: 2021.12.27.)

[4] Mandal, K. (2010): Genetische Charakterisierung von Wildhefe-Referenzstämmen mit geeigneten Markern. Wissensbericht 2010. Klosterneuburg, Austria, Institut für Weinbau Klosterneuburg:235-236.

[5] Barisashvili, G. (2011): Making wine in kvevri - a unique Georgian tradition. (Hozzáférés: 2021.12.27.)

[6] Kaltzin, W. (2012): „Natural wines” als. Trend. Seminar Önologisch XI. (Hozzáférés: 2021.12.27.)

[7] Martins,N., Garcia, R., Mendes, D., Costa Freitas, A.M., da Silva, M.G., Cabrita, M.J. (2018): An ancient winemaking technology: Exploring the volatile composition of amphora wines. LWT 96 288-295.

[8] Issa-Issa, H., Lipan, L., Cano-lamadrid, M., Nems, A., Corell, M., Calatayud-Garcia, P., A.Carbonell-Barrachina, Á., López-Lluch, D. (2021): Effect of Aging Vessel (Clay-Tinaja versus Oak Barrel) on the Volatile Composition, Descriptive Sensory Profile, and Consumer Acceptance of Red Wine. Beverages 7 35. DOI (Hozzáférés: 2021.12.27.)

[9] Shalashvili, A., Ugrekhelidze, D., Targamadze, I., Zambakhidze, N. & Tsereteli, L. (2011): Phenolic Compounds and Antiradical Efficiency of Georgian (Kakhethian) Wines. Journal of Food Science and Engineering 1 361-365.

[10] Rossetti, F. & Boselli, E. (2017): Effects of in-amphorae winemaking on the chemical and sensory profile of Chardonnay wine. Scientia Agriculturae Bohemica, 48 (1) 39-46.

[11] Bene ZS. & Kállay M. (2019): Polyphenol contents of skin-contact fermented white wines. Acta Alimentaria 48 515-524.

[12] Baiano, a., Mentana, A., Quinto, m., Centonze, D., Longobardi, F., Ventrella A., Agostiano, A., Varva, G., De Gianni, A., Terracone, C. (2015): The effect of in-amphorae aging on oenological parameters, phenolic profile and volatile composition of Minutolo white wine. Food Res. Int. 74 294-305.

[13] Diaz, C., Laurie, V.F., Molina, A.-M., Bücking, M. & Fisher, R. (2013): Characterization of selected organic and mineral components of kvevri wines. Am. J.Enol.Vitic. 64 532-537.

[14] Diaz, C. (2014): Investigation of traditional winemaking methods with a focus on spontaneous fermentation and the impact on aroma. Doktorin dissertation, RWTH Aachen University, Aachen, Németország

[15] Darias-Martin, J., Rodríguez, M.O., Rosa, E.D., Lamuela-Raventós, M. (2000): Effect of skin contact on antioxidant phenolics in white wine, Food Chemistry 71 (4) 483 – 487. DOI

[16] Bene ZS. & Kállay M. (2018): A szőlő fenolos vegyületeinek borokra gyakorolt hatása a héjonerjesztés során. In: szerk. Dankó L.: Narancsbor-Fejezetek a gasztronómiai újdonságok témaköréből. Bodrogkeresztúr. Tokajbor-Bene Kft. Kiadó. pp.18-25.

[17] Gambelli, L.& Santaroni, G.P. (2004) Polyphenols content in some Italian red wines of different geographical origins. Journal of Food Composition and Analysis. 17 (5) 613–618.

[18] Landrault, N., Poucheret, P., Ravel, P., Gasc, F., Cros, G., Teissedre, P.L. (2001): Antioxidant capacities and phenolics levels of french wines from different varieties and vintages. J. Agric. Food Chem. 49 (7) 3341–3348.

[19] Leskó, A. (2011): A tőketerhelés hatása a szőlőbogyó, a must és a bor összetételére. PhD-értekezés, BCE, Budapest

[20] Kállay M. (2007): A bor alkotóelemei, a hazai borok sajátosságai. Az Országgyűlés mezőgazdasági bizottságának „A bor hatása az egészségre - Molekulától a betegágyig” című rendezvény szakmai előadása (Hozzáférés: 2021.12.27.)

[21] Légli A. (2015): A Légli Kőagyag Amfora. https://www.legli.hu/amfora (Hozzáférés: 27.12.2021)

[22] Godelmann, R., Fang, F., Humpfer, E., Schutz, B., Bansbach, M., Schafer, H., Spraul, M. (2013): Targeted and Nontargeted Wine Analysis by H-1 NMR Spectroscopy Combined with Multivariate Statistical Analysis. Differentiation of Important Parameters: Grape Variety, Geographical Origin, Year of Vintage. Journal of Agricultural and Food Chemistry 61 (23) 5610-5619.

[23] Csomós E. (2003): Magyar fehér- és vörösborok összehasonlító vizsgálata a szabad aminosav és a biogén amin tartalom alapján. PhD-értekezés, BMGE, Budapest

Tovább a cikk olvasásához


A feniltiokarbamid érzékenység összefüggései a testösszetétellel, valamint a kávé- és teafogyasztással

Cikk letöltése PDF formátumban

A feniltiokarbamid érzékenység összefüggései a testösszetétellel, valamint a kávé- és teafogyasztással

DOI: https://doi.org/10.52091/EVIK-2022/2-1-HUN

Érkezett: 2022. január – Elfogadva: 2022. március

Szerzők

1 Élelmiszertudományi és Technológiai Intézet, Magyar Agrár- és Élettudományi Egyetem
2 Pécsi Sörfőzde Zrt.
3 Dietetikai és Táplálkozástudományi Tanszék, Semmelweis Egyetem, Egészségtudományi Kar

Kulcsszavak

ízérzékelés, egypontos nukleotid polimorfizmus, bioelektromos impedancia, testtömegindex, élelmiszer preferenciák

1. Összefoglalás

A TAS2R38 keserű íz érzékeléséért felelős receptor-gén polimorfizmusai bimodális receptor választ váltanak ki a populációban a feniltiokarbamid, illetve a 6-n-propiltiouracil érzékelése során. A feniltiokarbamiddal és a 6-n-propiltiouracillal szembeni érzékenység genetikai eltérései irodalmi adatok alapján befolyásolhatják a testösszetételt, az élelmiszer preferenciákat és az élelmiszerek fogyasztási gyakoriságát. Hazánkban eddig ezeknek a faktoroknak az együttes vizsgálatával kapcsolatban még nem született publikáció.

Jelen kutatás célja összefüggések keresése a feniltiokarbamid taster státusz és a testösszetétel, valamint a különböző keserű ízű élelmiszerek fogyasztási gyakorisága között.

A vizsgálat során elvégeztük a résztvevők taster státusz felmérését (n = 170), bioelektromos impedancia alapú testösszetétel-meghatározását (n = 96). A résztvevők ezen túlmenően kitöltöttek egy keserű élelmiszerekre vonatkozó fogyasztási gyakorisági kérdőívet (n = 170). Az adatelemzéshez leíró statisztikai módszereket, kereszttábla-elemzést, többszörös korrespondencia-analízist (Multiple Correspondence Analysis), valamint Mann-Whitney próbát használtunk, 5%-os szignifikanciaszinten.

A taster és non-taster kategóriák arányai megegyeznek a nemzetközi szakirodalom-ban közölt adatokkal (rendre 70%/30%). A taster státusz és a többi vizsgált paraméter között nem adódott szignifikáns összefüggés, azonban a többszörös korrespondencia analízis alapján a nemzetközi szakirodalommal egybevágó tendenciák figyelhetők meg. A nemek és a testösszetétel, valamint az élelmiszerpreferenciák egyes változói között szignifikáns összefüggés mutatható ki.

A szakirodalmi adatok, és saját eredményeink alapján nem zárható ki, hogy összefüggés áll fenn a genotípus és a testösszetétel, valamint az élelmiszerválasztás között. További, nagymintás, reprezentatív kutatások eredményei szükségesek a feltételezések igazolásához.

Rövidítések: PROP: propiltiouracil; PTC: feniltiokarbamid; SNP: Single Nucleotid Polymorphism (egypontos nukleotid polimorfizmus); GPCR: G Protein Coupled Receptor (G-protein kapcsolt receptor); PAV: Prolin-Alanin-Valin; AVI: Alanin-Valin-Izoleucin; AAI: Alanin-Alanin- Izoleucin; PAI: Prolin-Alanin -Izoleucin; PVI: Prolin-Valin-Izoleucin; AAV: Alanin-Alanin- Valin; FFQ: Food Frequency Questionnaire (élelmiszerfogyasztási gyakorisági kérdőív); BIA: bioelektromos impedancia; BMI: Body Mass Index (testtömegindex); PBF: Percent Body Fat (testzsírszázalék); VFA: Visceral Fat Area (viszcerális zsír kiterjedése); MCA: Multiple Correspondence Analysis (többszörös korrespondencia analízis)

2. Bevezetés

A körülöttünk lévő világot, illetve abban önmagunkat érzékszerveinken és érzékeinken keresztül észleljük. Az emberek esetében öt alap érzéket különböztetünk meg: a látást, a hallást, a tapintást, a szaglást és az ízlelést. Ezeken kívül más érzékeket is ismerünk, ide tartozik pl. az egyensúly, az éhség, a szomjúság, a fájdalom vagy a rossz közérzet [1]. Az ízek érzékelése – a szaglással és az általános (trigeminális) kemoszenzoros rendszerrel együtt – a szájhoz és az orrhoz kötődik, és az ún. kémiai érzőfolyamatok közé tartozik, melyek feladata a környezetünkben található vegyületek érzékelése. Az ízek érzékeléséért felelős receptorok az elfogyasztott vegyületeket detektálják, melyeket ízanyagoknak nevezünk. Ezek többnyire vízben oldódó molekulák, melyek a táplálék minőségéről és biztonságosságáról szolgáltatnak információkat [2].

Az ízérzékelés közvetlen kontaktfolyamat, melynek kizárólagos helye a szájüreg. Az érzékelésért felelős receptorok a nyelv felszínén, a garatban, a lágy szájpadon és a nyelőcső felső részén, az ún. ízlelőszemölcsökön elhelyezkedő ízlelőbimbókon találhatóak meg. Az ezek által közvetített információ a VII; IX. és X. agyidegeken, majd az agytörzsi és agyalapi magvakon keresztül a frontális operculum és az insula ízlelőkérgébe érkezik. Ezek a kérgi területek, valamint az agytörzsben a tractus solitarius magvai összeköttetésben állnak a hypothalamussal és az amygdalával, melyek valószínűleg befolyásolják az éhséget és a jóllakottságot (telítettséget), az étkezéssel kapcsolatos egyéb homeosztatikus válaszokat, valamint az étkezéssel kapcsolatos érzelmi reakciókat [2, 3].

A keserű íz gyakran elutasítást vált ki, mely egy veleszületett emberi reakció. Ez az averzív válasz annak köszönhető, hogy számos keserű ízű vegyület (szekunder növényi metabolitok, pl. alkaloidák, egyes szervetlen és szintetikus vegyületek, élelmiszerek esetében pl. az avas zsírok) toxikus, ezek elfogyasztása egészségkárosító, vagy akár életet veszélyeztető is lehet [4]. Ugyanakkor, megannyi olyan keserű ízű vegyület is ismert, mely gyógyszerészeti és táplálkozástudományi szempontból előnyös. Ilyen vegyületek pl. a Brassicaceae családba tartozó káposzta, brokkoli, vagy bimbós kel glükozinolátjai, és ezek bomlástermékei, az izocianátok; a kávé, a tea és a kakaó metilált xantinszármazékai, a koffein, a teofillin és a teobromin; vagy a sörök keserűségét adó komló-eredetű alfa-savak. Míg a zöldségfélék esetében általában elutasítást váltanak ki ezek a vegyületek, az utóbb említett élvezeti termékek esetében a keserű íz kívánt tulajdonság [5, 6, 7].

Az ízek érzékelése során öt alapízt különböztetünk meg: az édeset, a sósat, a savanyút, a keserűt és az umamit. Utóbbi az érzékeléséért felelős receptor felfedezése után, 2002-ben került hivatalosan az alapízek közé [8]. Az öt alapíz közül a keserű íz detektálása a legkomplexebb, ennek szabályozásért a TAS2R géncsalád felelős, mely 25 funkcionális génből áll. Ezek a gének kódolják a TAS2Rs receptorokat, melyek strukturálisan kötődnek egyes keserű ízt kiváltó vegyületekhez (ligandok), azonban számos receptor ligandját még nem sikerült azonosítani [7].

A feniltiokarbamid (PTC, más néven 1-fenil-2-tiourea), illetve a 6-n-propiltiouracil (PROP) színtelen vagy fehér színű, kristályos, keserű ízű szerves vegyületek: mindkettő kéntartalmú (SCN) funkciós csoportot tartalmaz. Kémiai szerkezetüket az 1. ábra mutatja be. Felhasználásuk eltérő: a a feniltiokarbamidot ipari adalékanyagként, színanyagként használják, míg propiltiouracilt antitireoid ágensként alkalmazzák pajzsmirigy-túlműködésben [9, 10].

1. ábra. A 1-fenil-2-tiourea (PTC) és a 6-n-propiltiouracil (PROP) szerkezete

A két vegyület különlegessége, hogy az emberekben ún. bimodális választ váltanak ki: a populáció egy része képes érzékelni ezek keserű ízét, egy része pedig nem. Ennek felfedezése Arthur Fox vegyész nevéhez fűződik. 1931-ben a DuPont vegyipari vállalat laboratóriumában dolgozó Fox véletlenül a laboratórium légterébe engedett kis mennyiségű finom kristályos PTC-t, mire egy kollégája panaszkodni kezdett annak keserű ízére. Fox ezt annak ellenére nem érezte, hogy közvetlenül érintkezett a porfelhővel. Ez után családját és barátait is tesztelte, mely során „taster” (érző) és „non-taster” (nem érző) státuszba sorolta az egyéneket. Eredményeit még ugyanazon évben alátámasztotta Laurence Hasbrouck Snyder genetikus, aki megállapította, hogy a non-taster státusz a Mendeli genetika szerint egy recesszív jelleg [11].

A kutatáshoz használt PTC lecserélése a rokon vegyületre, a PROP-ra az 1960-as években merült fel először, a PTC erős kénes illata miatt. Az 1980-as években azonban toxikológiai szempontból is kérdésessé vált a PTC, így a kutatók a két vegyület hatásainak összehasonlítása, és a PROP küszöbkoncentrációjának megállapítása után a PROP-ot is használatba vették [12].

Bartoshuk és munkatársai 1991-ben felfedezték, hogy a non-tasterek viszonylag homogén válaszreakciókat adtak, viszont a tasterek reakciói különbözőbbek voltak, egy alcsoportjuk pedig kifejezetten intenzívebbnek érezte a PROP keserű ízét. Az alcsoportba tartozókat „supertastereknek” nevezték el. A supertaster státuszt nem befolyásolja a taster státuszért felelős genotípus, azonban ez a felfedezés magával vonzotta az új klasszifikációs szint, a „medium taster” kifejezés használatát [13].

A taster státuszt a genetikai állomány bizonyos változatai, ebben az esetben egypontos nukleotid polimorfizmusok (Single Nucleotid Polymorphism, SNP) határozzák meg. Az SNP-k a genom egy nukleotidját érintő DNS szekvencia variációk, ugyanahhoz a fajhoz tartozó két egyed genetikai állománya között egyetlen bázis eltérései, ugyanabban a pozícióban. Minden ember genomja egyedi SNP mintázattal rendelkezik, azonban az ilyen változások akkor nevezhetők SNP-nek, ha a populáció legalább 1%-ban megjelennek. Az SNP-k általában a DNS osztódásakor (replikáció) bekövetkező hiba vagy DNS károsodás révén jöhetnek létre. Elhelyezkedhetnek génekben (kódoló és nem kódoló szakaszokban egyaránt), valamint gének között (intergenikusan) is, így okozhatnak szerkezet- és funkcióváltozást is [14].

Az SNP-ket gyűjtő dbSNP adatbázist az amerikai National Center for Biotechnology Information, és a National Human Genome Research Institute közösen hozta létre 1999-ben. A teljes emberi genomot 2003-ban sikeresen feltérképező Human Genome Project ugrásszerűen megnövelte a felfedezett SNP-k számát, mai napig több mint 650 millió egypontos nukleotid variációt térképeztek fel és gyűjtöttek össze az adatbázisban (weblap: https://www.ncbi.nlm.nih.gov/snp/) [15].

A PTC- és PROP-érzékenység esetében a TAS2R38 keserű íz detektálásáért felelős gén SNP-i határozzák meg, hogy az egyén képes-e a vegyület keserű ízének érzékelésére. A gén egy, hét transzmembrán doménnel rendelkező (heptahelikális) G-protein kapcsolt (Gene Protein Connected Receptor, GPCR) keserűíz-érzékelő receptort kódol, amely a vegyületek N-C=S csoportjához kötődik. Ebben az esetben 1002 nukleotidból álló gén 3 funkcionális missense-coding SNP-t tartalmaz, melyek nem szinonim változásokat eredményeznek, tehát megváltoztatják a kódolt fehérje szerkezetét. A kérdéses fehérje esetében az aminosav-sorrend az 1. táblázatban bemutatottak szerint alakulhat.

1. táblázat. A TAS2R38 gén polimorfizmusai, és a kódolt fehérje aminosavai [16, 17] alapján

A két leggyakoribb haplotípus a PAV, valamit az AVI. A domináns PAV/PAV, vagy PAV/AVI diplotípussal rendelkezők általában taster státuszúak, míg a recesszív AVI/AVI diplotípusúak non-tasterek. Kis gyakorisággal (1-5%), de egyes etnikumok és kisebb populációk esetében előfordulnak AAI, PAI, PVI és AAV haplotípust hordozók is, utóbbi esetében a két státusz nagyjából egyenlő eloszlást mutat. Az eddigi vizsgálatok alapján összességében elmondható, hogy a taster státusz gyakorisága nagyobb, a vizsgált populációtól függően 55-85% [16, 17, 18].

Magyarországon taster státuszt felmérő kutatást 1967-ben, 7-15 éves budapesti gyermekeken végzett Dr. Forrai György gyermekgyógyász és Bánkövi György matematikus. Munkájuk során Harris és Kalmus módszere alapján, PTC oldatokkal meghatározták az ízküszöbértéket az egyes gyermekek esetében, majd ebből következtettek a taster státuszra. Eredményeik alapján a gyermekek 67,8%-a taster státuszú volt, azonban a nem és a státusz között nem találtak szignifikáns összefüggést. Munkájukat az Orvosi Hetilapban publikálták [19].

Anatómiai szempontból a polimorfizmus az ízlelőbimbók számával van összefüggésben: a tasterek több fungiform papillával és ízlelőpórussal rendelkeznek [12].

A PTC és PROP érzékenység más faktorokra gyakorolt hatásának kutatását az 1960-as években kezdték el. A magyarországi születésű pszichofarmakológus-kutató, Roland Fischer volt az első, aki úgy gondolta, összefüggés állhat fenn az ízek érzékelése és az élelmiszerek kedveltsége között [20]. A mai napig számos kutató foglalkozik a taster státusz (és az azt meghatározó haplo- és diplotípusok) és a testtömegindex [17, 21], egyes élelmiszerek kedveltsége és fogyasztási gyakorisága (pl. alkoholos italok [22, 23], zöldségek – különösen a keresztesvirágúak [24, 25], kávé, tea [26], édesítőszerek [27]), valamint egyes megbetegedések (pl. Parkinson kór, gasztrointesztinális daganatok, krónikus rhinosinusitis) és azok tünetei közötti összefüggések felderítésével [28, 29, 30].

3. Célkitűzés

Jelen kutatás célja összefüggések keresése a taster státusz és a testösszetétel, és a különböző keserű ízű élelmiszerek fogyasztási gyakorisága között. Ehhez PTC taster-státusz felmérést, bioimpedancia alapú testösszetétel-meghatározást, valamint egy keserű élelmiszerekre vonatkozó fogyasztási gyakorisági kérdőívet használtunk.

4. Módszer

Az adatfelvételt 2019 februárjában és márciusában végeztük el. A résztvevők a Szent István Egyetem Élelmiszertudományi Karának, valamint a Semmelweis Egyetem Egészségtudományi Karának magyar-országi hallgatói és munkatársai voltak, összesen 170 fő. A taster státusz meghatározásában 170 fő, az testösszetétel-vizsgálatban 96 fő vett részt, az az élelmiszerválasztás gyakorisági kérdőívet (Food Frequency Questionnaire, FFQ) 170 fő töltötte ki. Az adatszolgáltatás minden vizsgálat esetében anonim módon történt. Az egyes adatok összekapcsolásához a résztvevőket kódszámokkal láttuk el. A résztvevőket az általános adatvédelmi rendelet (2016/679 EU rendelet) szerint tájékoztattuk a felvett adatok kezeléséről.

A taster státuszt PTC-vel átitatott papírcsíkokkal határoztuk meg (Precision Europe, Northampton, Egyesült Királyság). A PTC mennyisége csíkonként 20 µg volt. A résztvevőket a papírcsíkok ízlelése után taster és non-taster kategóriákba soroltuk.

A testösszetétel-meghatározást bioelektromos impedancia (BIA) alapú módszerrel, InBody 770 (InBody USA, Cerritos, California) készülékkel végeztük. A módszer az emberi test elektromos tulajdonságain, a különböző szövettípusok vezetőképességén alapul. Egyszerű, noninvazív műszeres módszer, mely igen pontos adatokkal szolgál több antropometriai paraméter, pl. a testzsír százalékos aránya, illetve annak eloszlása esetében is [31]. A felvett adatok közül a testtömegindexet (BMI, kg/m2), a testzsírszázalékot (PBF, %), valamint a viszcerális zsír kiterjedését (VFA, cm2) használtuk fel az elemzésekhez [32, 33, 34].

Az FFQ tartalmaz egy specifikus élelmiszerekből vagy élelmiszertípusokból összeállított listát, melyek esetében a kitöltőknek meg kell jelölniük, milyen gyakran fogyasztják az adott élelmiszert, vagy élelmiszer-típust [35]. A kérdőívet keserű ízű élelmiszereket is tartalmazó élelmiszercsoportokból állítottuk össze, a fogyasztási gyakoriságot kategóriákkal jelöltük. A kérdőívet Google Űrlapok segítségével hoztuk létre, az adatfelvétel online történt. A felvett adatok közül a kávé- és a teafogyasztás adatait közöljük, melyek esetében nem csak a fogyasztási gyakoriságot, hanem fajtát, illetve a leggyakrabban alkalmazott ízesítési módot is meg kellett adniuk a kitöltőknek. Az eredmények átláthatósága érdekében az FFQ gyakorisági kategóriáit három fő kategóriába vontuk össze, melyet a 2. táblázat szemléltet.

2. táblázat. A fogyasztási gyakorisági kérdőív kategóriáinak csoportosítása

5. Statisztikai elemzések

A résztvevők adatainak elemzéséhez leíró statisztikai módszereket (átlag, szórás, százalék), valamint a felvett adatok kategóriaváltozókká való átalakítását követően kereszttábla-elemzést, többszörös korrespondencia-analízist (Multiple Correspondence Analysis, MCA), valamint Mann-Whitney próbát használtunk, 5%-os szignifikanciaszinten [36]. Az elemzésekhez XLSTAT 2020.1.3; Microsoft® Office Excel® 2016 szoftvereket használtunk.

6. Eredmények

6.1. Demográfiai adatok

A kutatásban 55 férfi és 115 nő vett részt, így a nemek megoszlása 32,35 % férfi és 67,65 % nő. Az adatfelvételkor legfiatalabb résztvevő 19, a legidősebb 40 éves, az átlagéletkor pedig 23,85±3,05 év volt. Állandó lakhely szerint 44,70 % budapesti, 55,30 % vidéki lakos. A vidékiek 24,46 %-a pest megyei, ez az összes résztvevő 13,53 %-át teszi ki. Zala és Csongrád-Csanád megyét egy résztvevő sem jelölte meg állandó lakhelyként.

6.1.1. Taster státusz

A taster státusz megoszlása (3. táblázat) szerint a résztvevők 72,94 %-a taster, míg 27,06 %-a non-taster. A non-tasterek aránya a férfiak között 23,63 %, míg a nők között 28,69 % volt. A kereszttábla-elemzés alapján nincs szignifikáns összefüggés a nem és a taster státusz között (χ2(1, n=170)=0,483, p=0,48).

3. táblázat. A taster státusz felmérés eredménye nemek szerint és összesen (fő, n = 170)
6.1.1.1. A testösszetétel-meghatározás eredményei, és annak összefüggései a taster státusszal

A testösszetétel-meghatározást 23 férfi és 73 nő, összesen 96 fő esetében végeztük el. Az elemzéshez használt adatok átlagait a 4. táblázat tartalmazza.

4. táblázat. A testösszetétel-meghatározás során felvett adatok (átlag ± szórás, n = 96)

A férfiak között a BMI alapján 11 fő túlsúlyos (BMI 25,0-29,9) és 3 fő elhízott (BMI > 30,0) volt. A testzsírszázalék-értékek alapján 6 fő volt elhízott (PBF > 27 %), míg a viszcerális zsír kiterjedése 5 fő esetében volt magasabb, mint a 100 cm2-es felső határérték.

A nők között a BMI szerint 5 fő alultáplált (BMI<18,5), 7 fő túlsúlyos, valamint 3 fő elhízott volt. A testzsírszázalék-értékek alapján 18 fő volt elhízott (PBF > 32 %), a viszcerális zsír kiterjedése pedig 15 fő esetében haladta meg a 100 cm2-t.

A statisztikai elemzések alapján nem találtunk szignifikáns összefüggést egyik obezitást jelző paraméter és a taster státusz között sem (BMI: χ2(3, n=96)=0,42, p=0,93; PBF: χ2(1, n=96)=0,45, p=0,50; VFA: χ2(1, n=96)=0,01, p=0,90). A 2. ábrán látható többszörös korrespondenciaelemzés eredményei alapján elmondható, hogy az egyes jelző paraméterek egymással összefüggenek. A 2. ábrán látható mintázat alapján a non-tasterek közelebb helyezkednek el a normál testösszetételt és testtömeget jelző kategóriákhoz. A kereszttábla-elemzés alapján BMI alapján a nőkhöz képest a férfiak esetében szignifikánsan magasabb volt a túlsúlyosak aránya, mint a normál kategóriába tartozóké (χ2(3, n=96)=21,52, p<0,0001).

2. ábra. A többszörös korrespondenciaelemzés eredményei a taster státusz, a nem, és a testösszetételt jellemző paraméterek esetében (n = 96, p=0,05) Rövidítések: BMI = Body Mass Index (testtömegindex); PBF = Percent Body Fat (testzsírszázalék); VFA = Visceral Fat Area (viszcerális zsír kiterjedése)
6.1.1.2. A kávéfogyasztás és a taster státusz összefüggései

Az FFQ-t kitöltők közül 27 ember nem fogyaszt kávét, így az ő adataik az elemzésbe nem kerültek bele. A „Tejjel” kategória a tejjel, tejpótlóval, tejtermékkel való ízesítést, az „Édesítéssel” kategória a bármilyen édesítőszerrel (cukor, mesterséges és természetes édesítőszerek) való fogyasztást jelöli. A „Vegyes” kávéfajta az Arabica és a Robusta felváltva, vagy blend-ként való fogyasztását jelöli. 143 kávéfogyasztó közül 24 feketén (édesítés és tej, vagy tejpótló nélkül) fogyasztja az italt.

A kereszttábla-elemzés alapján nem áll fenn szignifikáns összefüggés a taster státusz és a kávéfogyasztás (χ2(1, n=170)=0,02, p=0,88), a fogyasztási gyakoriság (χ2(1, n=143)=2,57, p=0,10), és a fogyasztott kávéfajta (χ2(3, n=143)=4,21, p=0,24) között. Szintén nem találtunk szignifikáns összefüggést a feketén (χ2(1, n=143)=0,60, p=0,43), tejjel (χ2(1, n=143)=0,28, p=0,59), valamint az édesítve (χ2(1, n=143)=0,17, p=0,67) való fogyasztás, és a taster státusz között. A többszörös korrespondencia analízis mintázata (3. ábra) alapján azonban megfigyelhető, hogy a non-tasterek kevésbé gyakran fogyasztanak kávét, mint a tasterek, és a kávéfajtát sem tudják pontosan megnevezni. Amikor kávét fogyasztanak, édesítik azt. A tasterekhez az Arabica fajta áll a legközelebb, és általában nem édesítik a kávét. A tejjel való ízesítés nem feltétlenül jár együtt az édesítéssel. A nemek szempontjából egyértelmű különbség látszik: a nők között szignifikánsan több volt a kávéfogyasztó (χ2(1, n=143)=3,65, p=0,05), valamint a nők inkább tejjel és édesítve, míg a férfiak tej nélkül, feketén preferálják a kávét. Ezt a kereszttábla elemzés is alátámasztotta (Feketén fogyasztás: χ2(1, n=143)=3,46, p=0,05; Tejjel fogyasztás: χ2(1, n=143)=6,51, p=0,01).

3. ábra. A kávéfogyasztás összefüggései a taster státusszal és a nemmel (n = 143, p=0,05) Rövidítések: ’Tejjel’ = tejjel, tejpótlóval, tejtermékkel való ízesítés, ’Édesítéssel’ = bármilyen édesítőszerrel (cukor, mesterséges és természetes édesítőszerek) való ízesítés, ’Kávéfajta – Vegyes’: Arabica és a Robusta felváltva, vagy blend-ként (keverékként) való fogyasztás
6.1.1.3. A teafogyasztás és a taster-státusz összefüggései

A kitöltők közül 14 fő jelölte, hogy nem fogyaszt teát, így adataikat nem elemeztük. A „Fekete vegyes” kategória több teafajta, köztük fekete tea rendszeres fogyasztását jelenti. A „Zöld vegyes” a fekete teán kívül több más teafajta rendszeres fogyasztását jelenti. Az „Édesítve” kategória a bármilyen édesítőszerrel (cukor, mesterséges és természetes édesítőszerek) való teafogyasztást jelöli. Az „Ízesítés - Vegyesen” kategória az alkalmanként eltérő ízesítést (egyszer édesítve, és/vagy citrommal, egyszer ízesítés nélkül stb.), az „Ízesítés - Mindennel” pedig a cukorral és citrommal való fogyasztást jelöli. 156 teafogyasztó közül 57 fő ízesítés nélkül (édesítőszer, citrom hozzáadása nélkül) fogyasztja az italt.

Elemzéseink során nem találtunk szignifikáns összefüggést a taster státusz és a teafogyasztás (χ2(1, n=170)=1,26, p=0,26), annak gyakorisága (χ2(1, n=156)=0,95, p=0,32), a fogyasztott teafajták (χ2(5, n=156)=2,57, p=0,76) és az ital ízesítési módjai (χ2(4, n=156)=5,13, p=0,27) között. A nemek esetében szintén nem találtunk szignifikáns összefüggést.

A többszörös korrespondencia-analízis ábráján (4. ábra) látható mintázat alapján a nők és a taster-ek gyakrabban fogyasztanak teát, azon belül is fekete- és gyógynövényteákat, ízesítés nélkül, vagy édesítve. A férfiak és a non-taster-ek ritkábban fogyasztanak teát, valamint a zöld teákat részesítik előnyben, citrommal ízesítve és édesítve, vagy csak citrommal. Kizárólag gyümölcstea fogyasztása, illetve alkalmanként eltérő ízesítés alkalmazása a kitöltők körében nem jellemző.

4. ábra. A teafogyasztás összefüggései a taster státusszal és a nemmel (n = 156, p=0,05) Rövidítések: ’Teafajta - Fekete vegyes’ = több teafajta, köztük fekete tea rendszeres fogyasztása, ’Teafajta - Zöld vegyes’: a fekete teán kívül több más teafajta rendszeres fogyasztása, ’Édesítve’: bármilyen édesítőszerrel (cukor, mesterséges és természetes édesítőszerek) való ízesítés, ’Ízesítés – Vegyesen’: alkalmanként eltérő ízesítés (egyszer édesítve, és/vagy citrommal, egyszer ízesítés nélkül stb.), ’Ízesítés – Mindennel’: cukorral és citrommal való ízesítés

7. Megbeszélés

A taster és non-taster kategóriák arányai megegyeznek a nemzetközi szakirodalomban közölt adatokkal, melyek szerint amerikai és kaukázusi populációban 70 % / 30 % az eloszlás [6, 37].

A taster státusz és a BMI között nem találtunk szignifikáns összefüggést, hasonlóan korábbi kutatásokhoz [17, 38]. Ezzel szemben más kutatók kimutattak szignifikáns összefüggéseket a paraméterek között [39]. A szakirodalmi adatok ez alapján ellentmondásosak, nincs konszenzus a kutatók között. Új eredményeink alapján nem találtunk összefüggést a taster státusz és a testzsírszázalék, a viszcerális zsír kiterjedése között sem.

Vizsgálataink során a túlsúlyos BMI kategórián belül szignifikáns különbséget találtunk a két nem között. Ennek oka a két nem eltérő izomtömege: a BMI nem tesz különbséget a zsírszövet és a zsírmentes szövetek között, valamint nem kalkulál a testzsír eloszlásával sem, így, bár specifitása nagy, érzékenysége alacsonynak tekinthető [40]. A résztvevő férfiak esetében a vázizomtömeg szignifikánsan magasabb volt (Mann–Whitney U=1664, n1 =23, n2 = 73, p<0,0001, kétoldalú), így közülük többen kerültek a túlsúlyos kategóriába.

Noha a kávéfogyasztás esetében nem találtunk szignifikáns összefüggéseket, a többszörös korrespondenciaelemzés alapján azonban tendenciák figyelhetőek meg. A non-tasterek kevésbé gyakran fogyasztanak kávét, és nem is tudják megnevezni a fogyasztott kávé fajtáját. Ezek valószínűleg összefüggenek egymással, hiszen a kávéfogyasztás iránt kevésbé érdeklődők a kávé fajtája iránt is kisebb érdeklődést mutathatnak. Amikor kávét fogyasztanak, édesítik azt, ez a tasterek esetében kevésbé jellemző, melyet szakirodalmi adatok is alátámasztanak [41]. A nemek esetében a kávé eltérő ízesítéssel, illetve ízesítés nélkül („Feketén”) való preferálása esetleg egy-egy társadalmi elvárásból fakadó magatartásnak tulajdonítható, mely szerint a rövid eszpresszó kávé (espresso shot) fogyasztása férfiasabb, míg a tejjel-édesítéssel készült kávéitaloké (pl. milk espresso) nőiesebb [42].

A teafogyasztás esetében sem találtunk szignifikáns összefüggéseket, azonban tendenciózus eredményeink összhangban vannak a nemzetközi szakirodalommal, miszerint a tasterek kevésbé preferálják a zöld teákat [43, 44].

A kutatás limitációja, hogy demográfiai szempontból nem volt reprezentatív. A vizsgálatok során kereskedelmi forgalomban kapható tesztcsíkokkal dolgoztunk, melyeknél pontosabb eredményekkel szolgálhatnak PTC vagy PROP oldatsorokkal végzett tesztek.

8. Következtetés

A szakirodalmi adatok, és saját eredményeink alapján nem zárható ki, hogy összefüggés áll fenn a genotípus és a testösszetétel, valamint az élelmiszerválasztás között. Valószínűleg azonban nem a genotípus, hanem a fenotípus (taster – non-taster) az, ami közvetetten, a preferenciákon és az élelmiszerválasztáson keresztül hozzájárulhat az elhízáshoz, és az ahhoz köthető betegségek kialakulásához. Mivel azonban az étkezési szokásokat és az élelmiszerpreferenciákat más, pl. szociodemográfiai és pszichológiai faktorok is befolyásolják, ezek hatása felülírhatja a fenotípus alapján „törvényszerűnek” vélt következményeket (keserű íz kedvelése/kerülése). További, nagymintás, reprezentatív kutatások eredményei szükségesek a feltételezések igazolásához.

9. Nyilatkozatok

Anyagi támogatás: A projekt az EFOP-3.6.3-VEKOP-16-2017-00005 számú pályázat támogatásával készült. Az Innovációs és Technológiai Minisztérium ÚNKP-19-3-I-SZIE-65 kódszámú Új Nemzeti Kiválóság Programjának szakmai támogatásával készült. A szerzők köszönik a Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal támogatását (FK 137577).

Szerzői munkamegosztás: Kísérlettervezés: BB, LA, VBM, GA; Adatgyűjtés: BB, KD, LA, VBM, KZ; Adatelemzés: BB, GA; Kézirat elkészítése: BB, GA, KZ; Kézirat felülvizsgálata, jóváhagyása: BB, GA, KD, LA, VBM, KZ.

Érdekeltségek: A szerzőknek nincsenek érdekeltségeik.

Köszönetnyilvánítás: Biró Barbara köszöni a Magyar Agrár- és Élettudományi Egyetem Élelmiszertudományi Doktori Iskola támogatását. Gere Attila köszöni a Prémium Posztdoktori Program és az NKFIH K134260 számú projektjének támogatását. A szerzők köszönik a kutatásban részt vevők közreműködését.

10. Irodalom

[1] Miller-Keane, O’Toole M. (2003): Miller-Keane Encyclopedia & Dictionary of Medicine, Nursing & Allied Health, 7th ed. Saunders, Philadelphia.

[2] Purves D; Augustine G. J; Fitzpatrick D; et al. (2004): Neuroscience, 3rd ed. Sinauer Associates, Sunderland.

[3] Gottfried J. A. (2011): Neurobiology of Sensation and Reward, 1st ed. CRC Press, Boca Raton. DOI

[4] Meyerhof W; Behrens M; Brockhoff A; et al. (2005): Human bitter taste perception. Chemical Senses, 30 (Suppl 1) pp. 14-15. DOI

[5] Wieczorek M. N; Walczak M; Skrzypczak-Zielińska M; et al. (2017): Bitter taste of Brassica vegetables: the role of genetic factors, receptors, isothiocyanates, glucosinolates and flavor context. Critical Reviews in Food Science and Nutrition, 58 (18) pp. 3130-3140. DOI

[6] Tepper B. J. (2008): Nutritional Implications of Genetic Taste Variation: The Role of PROP Sensitivity and Other Taste Phenotypes. Annual Review of Nutrition, 28 pp. 367-388. DOI

[7] Beckett E. L; Martin C; Yates Z; et al. (2014): Bitter taste genetics - the relationship to tasting, liking, consumption and health. Food and Function, 5 (12) pp. 3040-3054. DOI

[8] Kurihara K. (2009): Glutamate: From discovery as a food flavor to role as a basic taste (umami). American Journal of Clinical Nutrition, 90 (3) pp. 1-3. DOI

[9] National Center for Biotechnology Information, PubChem Database. Phenylthiourea, CID=676454. (Hozzáférés: 2020. 05. 20.)

[10] National Center for Biotechnology Information, PubChem Database. Propylthiouracil, CID=657298. (Hozzáférés: 2020. 05. 20.)

[11] Trivedi B. P. (2012): The finer points of taste. Nature, 486 S2-S3. DOI

[12] Bartoshuk L. M; Duffy V. B; Miller I. J. (1994): PTC/PROP Tasting: Anatomy, Psychophysics, and Sex Effects. Physiology and Behavior, 56 (6) pp. 1165-1171. DOI

[13] Hayes J. E; Keast R. S. J. (2011): Two decades of supertasting: Where do we stand? Physiology and Behavior, 104 (5) pp. 1072-1074. DOI

[14] Brookes A. J. (1999): The essence of SNPs. Gene, 234 (2) pp. 177-186. DOI

[15] National Center for Biotechnology Information and U.S. National Library of Medicine Database of Single Nucleotide Polymorphisms (dbSNP). (Hozzáférés: 2020. 05. 20.)

[16] Kim U. K; Drayna D. (2005): Genetics of individual differences in bitter taste perception: Lessons from the PTC gene. Clinical Genetics, 67 (4) pp. 275-280. DOI

[17] Deshaware S; Singhal R. (2017): Genetic variation in bitter taste receptor gene TAS2R38, PROP taster status and their association with body mass index and food preferences in Indian population. Gene, 627 pp. 363-368. DOI

[18] Campbell M. C; Ranciaro A; Froment A; et al. (2012): Evolution of functionally diverse alleles associated with PTC bitter taste sensitivity in Africa. Molecular Biology and Evolution, 29 (4) pp. 1141-1153. DOI

[19] Forrai Gy; Bánkövi Gy. (1967): Phenylthiocarbamid-ízlelőképesség vizsgálata budapesti gyermekpopulációban. Orvosi Hetilap, 108 (36) pp. 1681-1687. DOI

[20] Fischer R; Griffin F; England S; et al. (1961): Taste Thresholds and Food Dislikes. Nature, 191 pp. 1328. DOI

[21] Carta G; Melis M; Pintus S; et al. (2017): Participants with Normal Weight or with Obesity Show Different Relationships of 6-n-Propylthiouracil (PROP) Taster Status with BMI and Plasma Endocannabinoids. Scientific Reports, 7 (1) pp. 1-12. DOI

[22] Choi J. H; Lee J; Yang S; et al. (2017): Genetic variations in taste perception modify alcohol drinking behavior in Koreans. Appetite, 113 pp. 178-186. DOI

[23] Yang Q; Dorado R; Chaya C; et al. (2018): The impact of PROP and thermal taster status on the emotional response to beer. Food Quality and Preference, 68 pp. 420-430. DOI

[24] Shen Y; Kennedy O. B; Methven L. (2016): Exploring the effects of genotypical and phenotypical variations in bitter taste sensitivity on perception, liking and intake of brassica vegetables in the UK. Food Quality and Preference, 50 pp. 71-81. DOI

[25] Mezzavilla M; Notarangelo M; Concas M. P; et al. (2018): Investigation of the link between PROP taste perception and vegetables consumption using FAOSTAT data. International Journal of Food Sciences and Nutrition, 70 (4) pp. 484-490. DOI

[26] De Toffoli A; Spinelli S; Monteleone E; et al. (2019): Influences of Psychological Traits and PROP Taster Status on Familiarity with and Choice of Phenol-Rich Foods and Beverages. Nutrients, 11 (6) pp. 1329. DOI

[27] Yang Q; Kraft M; Shen Y; et al. (2019): Sweet Liking Status and PROP Taster Status impact emotional response to sweetened beverage. Food Quality Preference, 75 pp. 133-144. DOI

[28] Cossu G; Melis M; Sarchioto M; et al. (2018): 6-n-propylthiouracil taste disruption and TAS2R38 nontasting form in Parkinson’s disease. Movement Disorders, 33 (8) pp. 1331-1339. DOI

[29] Choi J; Kim J. (2019): TAS2R38 Bitterness Receptor Genetic Variation and Risk of Gastrointestinal Neoplasm: A Meta-Analysis. Nutrition and Cancer - An International Journal, 71 (4) pp. 585-593. DOI

[30] Dżaman K; Zagor M; Sarnowska E; et al. (2016): The correlation of TAS2R38 gene variants with higher risk for chronic rhinosinusitis in Polish patients. Otolaryngologia Polska - The Polish Otolaryngology, 70 (5) pp. 13-18. DOI

[31] Dubiel A. (2019): Bioelectrical impedance analysis in medicine. World Scientific News, 125 pp. 127-138.

[32] WHO (2000): Obesity: Preventing and managing the global epidemic. WHO Technical Report Series 894, Geneva.

[33] American Council on Exercise (2020): Percent Body Fat Norms for Men and Women. ACE - Tools & Calculators. Hozzáférés: 2020. 06. 18.

[34] InBody USA. InBody 770 Result Sheet Interpretation. (Hozzáférés: 2020. 06. 18.)

[35] Welch A. A. (2013): Dietary intake measurement: Methodology. In: Caballero B. (ed.): Encyclopedia of Human Nutrition, 3rd ed; vol. 2. Academic Press, Oxford, pp. 65-73. DOI

[36] Greenacre M. (2017): Correspondence Analysis in Practice, 3rd ed. Chapman and Hall/CRC, New York. DOI

[37] Tepper B. J. (1999): Does genetic taste sensitivity to PROP influence food preferences and body weight? Appetite, 32 (3) pp. 422. DOI

[38] Yackinous C. A; Guinard J. (2002): Relation between PROP (6-n-propylthiouracil) taster status, taste anatomy and dietary intake measures for young men and women. Appetite, 38 (3) pp. 201-209. DOI

[39] Choi S. E; Chan J. (2015): Relationship of 6-n-propylthiouracil taste intensity and chili pepper use with body mass index, energy intake, and fat intake within an ethnically diverse population. Journal of the Academy of Nutrition and Dietetics, 115 (3) pp. 389-396. DOI

[40] Adab P; Pallan M; Whincup P. H. (2018): Is BMI the best measure of obesity? BMJ, 360 pp. 15-16. DOI

[41] Masi C; Dinnella C; Monteleone E; et al. (2015): The impact of individual variations in taste sensitivity on coffee perceptions and preferences. Physiology and Behavior, 138 pp. 219-226. DOI

[42] Reitz J. K. (2007): Espresso. Food, Culture and Sociology, 10 (1) pp. 7-21. DOI

[43] Chamoun E; Mutch D. M, Allen-Vercoe E; et al. (2018): A review of the associations between single nucleotide polymorphisms in taste receptors, eating behaviors, and health. Critical Reviews in Food Science and Nutrition, 58 (2) pp. 194-207. DOI

[44] Pasquet P; Oberti B; El Ati J; et al. (2002): Relationships between threshold-based PROP sensitivity and food preferences of Tunisians. Appetite, 39 (2) pp. 167-173. DOI

Tovább a cikk olvasásához


Serratia fajok jellemzése, valamint Serratia marcescens kvalitatív kimutatása nyers és pasztőrözött tejből polimeráz láncreakción alapuló vizsgálati módszerrel

Cikk letöltése PDF formátumban

Serratia fajok jellemzése, valamint Serratia marcescens kvalitatív kimutatása nyers és pasztőrözött tejből polimeráz láncreakción alapuló vizsgálati módszerrel

DOI: https://doi.org/10.52091/EVIK-2021/2-4-HUN

Érkezett: 2020. július – Elfogadva: 2020. december

Szerzők

1 Magyar Tejgazdasági Kísérleti Intézet Kft., Mosonmagyaróvár
2 Széchenyi István Egyetem, Wittmann Antal Növény-, Állat- és Élelmiszer-tudományi Multidiszciplináris Doktori Iskola, Mosonmagyaróvár
3 Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Élelmiszertudományi Tanszék, Mosonmagyaróvár

Kulcsszavak

nozokomiális fertőzés, Serratia fajok, Serratia marcescens, patogén, prodigiozin, pigment, polimeráz láncreakció (PCR), élelmiszer-diagnosztika

1. Összefoglalás

A Serratia fajok elsősorban nozokomiális (kórházhigiénés fertőzés – a Szerk.) fertőzőként ismert opportunista patogén mikroorganizmusok, amelyek élelmiszer-minőségi elváltozásokat is okozhatnak. Az extracelluláris pigment-termelő Serratia marcescens tehéntejben való megjelenése annak piros elszíneződését okozza, kihívások elé állítva a tejipart és az élelmiszer-minősítő laboratóriumokat. A baktérium kimutatása hagyományos mikrobiológiai módszereken alapuló eljárásokkal idő- és munkaigényes, ezen túlmenően sok esetben nem is vezet eredményre, a kísérő mikroflóra kompetitív gátló hatása miatt. A vonatkozó szakirodalom elemzését követően a S. marcescens kimutatása kapcsán publikált végpont PCR módszereket és alkalmazott primereket in silico és in vitro vizsgálatban értékeltük, majd az eljárást üzemi tejmintákon teszteltük. A módszer alkalmazásával összesen 60 db nyers, illetve pasztőrözött tejmintát vizsgáltunk meg, amelyeknek több mint felét (32 db-ot) azonosítottuk S. marcescens pozitívként. Munkánk jelentőségét legfőképp a publikált vizsgálati módszerek élelmiszeripari gyakorlatban való alkalmazása adja. Eredményeink felhívják a figyelmet e baktériumfaj detektálásának a fontosságára.

2. Bevezetés és irodalmi áttekintés

Napjainkban az élelmiszerek kifogástalan minősége és hosszú eltarthatósági ideje a vásárlók által támasztott alapkövetelmény. Ennek megfelelően fokozódik az igény az egyre gyorsabb, pontosabb, megbízhatóbb élelmiszer-diagnosztikai eljárások iránt is. A molekuláris diagnosztikai módszerek ezzel összefüggésben mind nagyobb teret nyernek, például a kórokozó mikroorganizmusok gyors kimutatásában. Számos gyártó állít elő polimeráz láncreakción (PCR) alapuló, patogén mikrobák azonosítására alkalmas diagnosztikai kiteket, amelyeket sikerrel alkalmaznak magyarországi élelmiszervizsgáló laboratóriumokban is. Ezek a molekuláris biológiai tesztek főleg olyan mikrobák kimutatására alkalmasak, amelyek jelenléte nagy közegészségügyi kockázatot jelent (például Escherichia coli, Salmonella Typhimurium, Listeria spp.). Kisebb figyelem irányul azokra a kórokozókra, amelyek vizsgálatát jogszabály nem teszi kötelezővé. Ilyen mikróbák például a nyers és pasztőrözött tejben előforduló Serratia fajok is.

A Serratia fajok a környezetünkben sokfelé megtalálhatók [1]. Szaprofiták, illetve opportunista patogének [2]. Fakultatív anaerob, biofilmképző élőlények [1, 3]. A S. marcescens különösen jól szaporodik foszfortartalmú környezetben (például szappanok, samponok), és ellenáll egyes fertőtlenítőszereknek is [4, 5], így különböző nozokomiális betegségek okozója lehet [6, 7, 8]. A szakirodalom beszámol a S. marcescens fokozódó antibiotikum-rezisztenciájáról is [8, 9, 10]. A baktérium tehát könnyen túlél, szaporodik, így nem megfelelő higiénés körülmények között az élelmiszerekbe kerülhet. A fogyasztói tejbe is feltehetően a higiéniai szabályok áthágása következtében juthat, ott elszaporodik és többek között az élelmiszer minőségét is rontja [1, 11, 12]. A romlást némely faj esetén jellegzetes piros színárnyalat jelezi.

A magyarországi tejágazat esetében nem állnak rendelkezésre pontos adatok arról, hogy milyen mértékű a Serratia fajok, illetve a S. marcescens elterjedtsége, és hogy mely fajok okozzák a fertőzéseket, valamint rontják a tej minőségét. Arra vonatkozóan sincs hazai felmérés, hogy milyen mértékű a tejüzemek Serratia-szennyezettsége. Néhány publikációt leszámítva nemzetközi szinten is szegényesek a rendelkezésre álló információk a tejipar Serratia érintettségéről. Ilyen kivétel egy, a finn tejtermelő gazdaságokban tapasztalt, S. marcescens okozta tőgygyulladás-járványt bemutató tudományos cikk [1], valamint egy régebbi beszámoló, amely pigmentképző Serratia fajok masztitiszben játszott szerepét tárgyalja [13].

A tej piros elszíneződéséért a következő Serratia fajok lehetnek felelősek: S. marcescens, S. rubidaea, S. plymuthica és S. nematodiphila (1. táblázat). Előfordulási gyakoriságuk szerint a S. marcescens-nek van nagyobb jelentősége. Jellegzetes pigmentjük a vörös prodigiozin, amely vízben nem oldódó másodlagos anyagcseretermék, és amely meghatározott környezeti körülmények között termelődik [14, 15, 16, 17] (1. ábra). A táptalajon megjelenő tipikus piros telepek önmagukban még nem hordoznak elegendő információt a Serratia azonosításához, ugyanis számos egyéb, nem az enterobaktériumok közé tartozó nemzetség egyes fajai szintén termelhetnek prodigiozint [14, 18].

1. táblázat. Serratia fajok és pigmenttermelésük jellemzése [19–22]
1. ábra. Serratia marcescens tisztatenyészete tripton-szója agaron (TSA) (30 °C, 48 óra)

A Serratia fajok élelmiszerekből történő kimutatására ISO szabvány jelenleg nem áll rendelkezésre. Grimont és Grimont 2006-ban megjelent könyvfejezetében [9] foglalkozik a Serratia nemzetség jellemzőivel, az izolálás és az azonosítás szempontjaival is. A klasszikus mikrobiológiai módszerekkel történő azonosítás azonban meglehetősen körülményes, és a kísérőflóra gátló hatása miatt gyakran eredménytelen is, annak ellenére, hogy a tejminta rózsaszínes elszíneződése szemmel látható. A baktérium szelektív tenyésztésére elérhetők ugyan táptalajok [47], a gyakorlatban viszont ezek használata nem nyújt kielégítő megoldást. A hagyományos eljárások ráadásul idő- és munkaigényesek.

S. marcescens meghatározására létezik kereskedelmi forgalomban lévő gyorsmódszer, például a bioMérieux cég Rapid ID 32 E elnevezésű miniatürizált tesztkészlete, amely megfelel az ISO 7218 szabvány előírásainak [48]. A vizsgálat kivitelezéséhez azonban táptalajon felnövő telep szükséges. A kimutatás nehézségeinek kiküszöbölésére a már korábban említett, PCR módszeren alapuló diagnosztikai tesztek nyújthatnának megoldást. Jelenleg azonban egyedül a Primerdesign cég Genesig fantázianevű terméke említhető S. marcescens kimutatására alkalmas molekuláris diagnosztikai egységcsomagként [49].

Az élelmiszeripari és azon belül a tejipari vonatkozású szakirodalom meglehetősen szegényes a Serratia fajok és köztük S. marcescens végpont PCR vagy real-time PCR módszerrel történő kimutatásának témakörében. Hejazi és munkatársai [50] S. marcescens szerotipizálását végezték el RAPD-PCR technikával. Vizsgálataikhoz kórházi ellátásra szoruló páciensek szerológiai mintáit használták. Iwaya és munkatársai [6] szintén vérmintákat teszteltek S. marcescens törzsekre, real-time PCR módszert alkalmazva. Zhu és munkatársai [51] S. marcescens törzsek molekuláris jellemzését RFLP és PCR módszerrel végezték, míg Joyner és munkatársai [2] real-time PCR vizsgálattal detektáltak S. marcescens törzseket tengeri és egyéb vízi környezeti mintákból (például korall nyák, szivacs pórusvíz, üledék, csatornavíz, szennyvíz és hígított szennyvíz). Bussalleu és Althouse 2018-ben megjelent tanulmánya S. marcescens azonosítására alkalmas, hagyományos végpont PCR-technikáról számol be, amely hatékonyan detektálja a mikroorganizmus jelenlétét vaddisznó spermájában [52].

Célul tűztük ki S. marcescens tejből történő kimutatására alkalmas klasszikus PCR módszer beállítását. Munkánk jelentősége abban áll, hogy a szakirodalomban leírt, PCR vizsgálaton alapuló módszereket és alkalmazott primereket elemeztük, majd a megfelelőnek ítélt eljárást átültettük az élelmiszer-higiéniai vizsgálati gyakorlatba. Kísérleteinkben üzemi, nyers és pasztőrözött tejminták elszíneződésének a hátterében álló esetleges S. marcescens szennyeződés kvalitatív meghatározását végeztük.

3. Anyagok és módszerek

3.1. In silico vizsgálatok

Szakirodalmi közlések alapján kiválasztottunk három primerpárt (2. táblázat), amelyeket számítógépes modellezéssel, ún. in silico analízis során, valamint in vitro kísérletekben értékeltünk abból a célból, hogy a későbbi PCR vizsgálatok megvalósításához megtaláljuk a legalkalmasabbat.

2. táblázat. Alkalmazott Serratia marcescens-specifikus primerpárok

In silico vizsgálatainkban a primer szekvenciák specifikusságát DNS-adatbázissal (NCBI BLAST) [54] történő összehasonlítás útján ellenőriztük. Az adatbázissal történő összevetés a homológia-keresést („blasztolás”) teszi lehetővé. Ezt követően a primerek megfelelőségét, azaz választott genomokon egy lehetséges PCR reakció megvalósulását, molekuláris biológiai szoftverrel (SnapGene 5.1.5.) teszteltük [55]. Az utóbbi esetben az NCBI adatbázisából letöltöttünk pozitív és negatív kontroll genomokat, majd a SnapGene szoftver alkalmazásával vizsgáltuk, hogy in silico módon a primerpárokkal megvalósulhat-e PCR reakció. A referenciának használt pozitív és negatív kontrollok teljes kromoszóma genomok voltak (3. táblázat).

3. táblázat. In silico elemzésben pozitív és negatív kontrollként alkalmazott baktériumtörzsek genomjai, valamint a primerpárokra adott reakcióik

* Primerek: A. Fpfs1 és Rpfs2; B. FluxS1 és RluxS2; C. Serratia2-for és Serratia2-rev.

Jelmagyarázat:

3.2. In vitro kísérletes vizsgálatok

Az in silico vizsgálatok megerősítéseként in vitro kísérleteket végeztünk, amelyek során a kiválasztott primerpárokat laboratóriumi PCR vizsgálatban teszteltük baktériumok (pozitív kontroll törzsként több S. marcescens, negatív kontroll törzsként pedig Lactobacillus delbrueckii subsp. delbrueckii, Streptococcus thermophilus, Enterococcus faecalis és Micrococcus luteus) választott törzseinek genomi DNS mintáján. A mikroorganizmusok az MTKI Kft. gyűjteményébe tartozó, üzemi környezetből származó, genetikai azonosítással meghatározott baktériumtörzsek voltak.

A PCR reakcióhoz szükséges komponensek összemérése során egy reakcióra 5,2 µL PCR tisztaságú steril vizet, 10 µL DreamTaq Green 2× PCR Master Mixet (Thermo Fisher Scientific, Waltham, Massachusetts, Egyesült Államok), 0,4–0,4 µL (10 pmol/µl) primert és 4 µL izolált bakteriális genomi DNS-t használtunk. A reakciók negatív kontrollja PCR tisztaságú steril víz volt. A PCR berendezés (Mastercycler Nexus Gradient; Eppendorf International, Hamburg, Németország) programjának paraméterei a következőképpen alakultak: 95 °C 1 perc, majd 40 cikluson keresztül 95 °C 15 másodperc, 59,5 °C 15 másodperc, 72 °C 10 másodperc, végül 72 °C 7 perc [52].

A PCR reakció során képződött DNS szakaszok méret szerinti elválasztáshoz 10 µL mintát vizsgáltunk 2%-os agaróz gélben [TBE puffer (Tris-borate-EDTA) (10×), Thermo Fisher Scientific; Agarose DNA Pure Grade, VWR International, Debrecen, Magyarország; ECO Safe Nucleic Acid Staining Soluion 20.000×, Pacific Image Electronics, Torrance, Kalifornia, Egyesült Államok]. A DNS méretmarker a GeneRuler Low Range DNA Ladder (Thermo Fisher Scientific) volt. A géldokumentálás a Gel Doc Universal Hood II géldokumentációs berendezés és program (Bio-Rad, Hercules, Kalifornia, Egyesült Államok) alkalmazásával történt.

3.3. Nyers és pasztőrözött tejminták vizsgálata

Vizsgálatainkban egyrészt olyan, üzemi nyers és pasztőrözött tejmintákat alkalmaztunk, amelyek kapcsán felmerült a S. marcescens szennyeződés gyanúja azok rózsaszínes elszíneződése miatt. Másrészt teszteltünk az előbbiekkel együtt a laboratóriumba érkezett, elszíneződést azonban nem mutató, szintén üzemi nyers és pasztőrözött tejmintákat is.

A DNS-feltáró és -tisztító folyamathoz NucleoSpin Microbial DNA kitet (Macherey-Nagel, Düren, Németország) alkalmaztunk a gyártói előírások szerint. Az eluált DNS-t tartalmazó reakciócsöveket fagyasztóban tároltuk, -20 °C-on.

A következőkben 16S rDNS polimeráz láncreakcióval kontrolláltuk a DNS izolálás megfelelőségét és a minták amplifikálhatóságát, melyhez a 27f (5’-AGAGTTGATCMTGGCTCAG-3’) és 1492r (5’-TACGGYTACCTTGTTACGACTT-3’) primert alkalmaztuk. A PCR reakció összemérési térfogata 1 mintára: 5,6 µL PCR tisztaságú steril víz, 10 µL DreamTaq Green 2× PCR Master Mix, 0,2–0,2 µL (10 pmol/µl) primerek és 4 µL izolált bakteriális genomi DNS. A reakció negatív kontrollja PCR minőségű steril víz volt. A PCR berendezés programjának paraméterei a következők voltak: 95 °C 4 perc, majd 40 cikluson keresztül 95 °C 20 másodperc, 54 °C 30 másodperc, 72 °C 1 perc, végül 72 °C 5 perc.

A PCR reakció során képződött DNS szakaszok elválasztáshoz 5 µL mintát vizsgáltunk 1%-os agaróz gélben. DNS méretmarker a GeneRuler 1 kb Plus DNA Ladder (Thermo Fisher Scientific) volt. A vizsgált DNS mintát további PCR vizsgálatra alkalmasnak értékeltük, amennyiben az amplifikált DNS fragment kópiáinak hossza a várt méret (~1500 bp) szerint alakult.

Következő lépésben a minták S. marcescens-specifikus PCR vizsgálata és a gélelektroforézis történt a 3.2. In vitro kísérletes vizsgálatok című alfejezetben ismertetett módon. Az eredményeket jelenlét-hiány elv alapján értékeltük.

A módszer megfelelőségének ellenőrzése céljából kontrollvizsgálatban tejminták PCR eredményeit hasonlítottuk össze a néhány esetben meglévő API (bioMérieux, Budapest, Magyarország) vizsgálat eredményeivel. A módszert ezt követően alkalmaztuk S. marcescens jelenlétének nyers és pasztőrözött tejekből történő kimutatására.

4. Eredmények

In silico vizsgálatainkban a primerek homológia vizsgálata során azok elsősorban S. marcescens kromoszóma genomokkal mutattak hasonlóságot. Találtunk azonban egyezést S. rubidaea és S. nematodiphila törzseknél és néhány nem Serratia fajnál is. Az eredményeket figyelembe vettük a SnapGene szoftveres vizsgálatainkhoz tervezett referencia genomok kiválasztásánál. További vizsgálat szükségességét indokolta, hogy a megfelelő homológia, a bázisok illeszkedése még nem jelenti automatikusan egy PCR reakció megvalósulását, mert például a primerek iránya, olvadási hőmérséklete és a képződő PCR termék mérete is meghatározó.

A SnapGene vizsgálatban PCR reakciókat a következő paraméterek mellett prediktáltunk: elemzéseinket legalább 15 bázis egyezése és eltérés (ún. single isolated mismatch) kizárása mellett végeztük. Az olvadási hőmérséklet (melting temperature) legkisebb értéke 50 °C, az amplifikáció eredményeképpen keletkezett fragmentum maximális hossza pedig 3 kbp volt.

Ahogy a 3. táblázatban látható, a Serratia2-for és Serratia2-rev primerpár S. marcescens genomokra illesztve minden esetben mutatott amplifikációt. A PCR reakció általában hat-hét amplikont is eredményezett a 16S rDNS szakaszokon. Az Fpfs1–Rpfs2 és a FluxS1–RluxS2 primerpárok tapadási helye a 16S rDNS-en kívül található a legtöbb S. marcescens törzsben, viszont néhány esetben nem mutattak in silico amplifikációt, érzékenységük tehát nem bizonyult megfelelőnek. A negatív kontroll genomoknál a Serratia2-for és Serratia2-rev primerpár néhány esetben PCR reakció lezajlását jelzi előre bizonyos S. rubidaea és S. nematodiphila törzseknél. Az Fpfs1–Rpfs2 primerek alkalmazásával a PCR reakció egy S. nematodiphila törzs esetén játszódna le. A FluxS1–RluxS2 primerek nem jelezték előre reakció lezajlását egyik választott negatív kontroll genomon sem (3. táblázat).

Az in vitro kísérletekben a pozitív kontrollnak választott S. marcescens genomokon mindhárom primerpár adott jelet a várt fragmentméret szerint, és egyik sem adott jelet a negatív kontrollokon. A Serratia2-for és Serratia2-rev primerpárral végzett vizsgálatot mutatja be a 2. ábra. A negatív mintáknál az 50 bp magasságban megjelenő gyenge jeleket a melléktermékként keletkező aspecifikus DNS darabok, a primer-dimerek felszaporodása okozza.

Az in silico analízisek és az in vitro vizsgálatok eredményei alapján további munkánkhoz a Serratia2-for és Serratia2-rev primereket ítéltük megfelelőnek, annak ellenére, hogy azok specifikussága nem tökéletes. A döntés alapja egyrészt a S. marcescens előfordulásának valószínűsíthető gyakorisága, másrészt a fals negatív vizsgálati eredmények elkerülésének a fontossága volt.

A beállított módszer megfelelőségét ellenőrizendő, kontroll vizsgálatban üzemi tejmintákat teszteltünk. A tejminták (n=10) közül néhány rózsaszínes elszíneződést mutatott. Vizsgálati módszerünkkel kilenc mintát pozitívnak ítéltünk a keresett mikrobára. A minták közül négy esetében API vizsgálati eredménnyel is rendelkeztünk. A négy API-pozitív minta a PCR vizsgálatban is pozitívnak bizonyult. A módszert ezt követően alkalmaztuk S. marcescens nyers és pasztőrözött tejekből történő kimutatására.

A tejminták egy része barackos-rózsaszínes elszíneződést mutatott (3. ábra), ez azonban számos esetben nem volt egyértelmű, a halvány vagy sárgásba hajló színárnyalat miatt. Összesen 60 minta vizsgálatát végeztük el. Ebből 32 db (53,3%) pozitív és 28 db (46,7%) negatív eredményt adott S. marcescens jelenlétére.

A 4. ábrán egyik vizsgálatunk eredményét, a gélelektroforézissel végzett elválasztás képét mutatjuk be. Jól látható, hogy a pozitív kontroll törzs pozitív, a negatív kontroll minta negatív jelet adott, mindemellett három vizsgálati minta esetében pozitív jelet kaptunk. A negatív mintáknál megjelenő gyenge jeleket ebben az esetben is a primer-dimerek felszaporodása okozta.

2. ábra. Serratia2-for és Serratia2-rev primerpárral végzett PCR vizsgálat eredménye választott baktériumtörzsek genomján. Sorok: 1. Serratia marcescens 551R; 2. Serratia marcescens 1911; 3. Lactobacillus delbrueckii subsp. delbrueckii 0801; 4. Streptococcus thermophilus 1102; 5. Enterococcus faecalis 1101; 6. Micrococcus luteus CLTB1; 7. Negatív kontroll (steril víz); M: Molekulasúly marker
3. ábra. Tejminták. Baloldali minta: Serratia marcescens-negatív, jobboldali minta: Serratia marcescens-pozitív a PCR vizsgálat eredménye alapján
4. ábra. Serratia marcescens-specifikus PCR vizsgálat gélelektroforézis képe. 1.–7.: Tejminták; K+: Pozitív kontroll (Serratia marcescens genomi DNS); K-: Negatív kontroll (steril víz); M: Molekulasúly marker

5. Megbeszélés

Eredményeink értékelésekor fontos figyelembe venni, hogy a PCR vizsgálat a mintában található cél DNS amplifikálására, detektálására alkalmas módszer, amelynek alapján nem lehet megállapítani, hogy az amplifikált S. marcescens-specifikus DNS vajon szaporodóképes, elpusztult, vagy ún. VBNC állapotú sejtekből származik-e. VBNC („viable but not culturable”) állapotban a sejtek életképesek, metabolikusan aktívak, viszont klasszikus, tenyésztéses módszerekkel nem szaporíthatók fel. Az állapot reverzibilis.

Munkánk célja S. marcescens kimutatását szolgáló klasszikus PCR módszer beállítása volt. Az alkalmazott vizsgálati eljárással elvégezhető a tejminták elszíneződésének hátterében álló S. marcescens szennyeződés kvalitatív meghatározása.

Noha itt bemutatott kísérleteinkben a pigmenttermelő S. marcescens kimutatására összpontosítottunk, egy jövőbeli, nemzetség-szintű vizsgálat során mind a 20 Serratia faj (1. táblázat) azonosítása megvalósulhatna. A többi Serratia faj detektálásának jelentőségét az adja, hogy jóllehet a Pseudomonas nemzetség a hűtött nyerstej romlásának legfőbb okozója, ismeretesek a Serratia fajok e tekintetben kimutatható veszélyei is [56]. Pseudomonas törzsekkel együtt ugyanis számos esetben Serratia törzseket is azonosítottak a tej romlásának okozóiként. A Serratia nemzetség tagjait kimutatták tejfeldolgozó üzemekben [3, 12], 4 °C-on tárolt nyerstej-mintákban [56, 57, 58] és tejtartályokban is [59]. Grimont és Grimont [9] már másfél évtizeddel ezelőtt megállapította, hogy a nyerstej-tételek esetenként Serratia fajokkal szennyeződhetnek, a tejtermékekben megjelenő leggyakoribb fajok pedig a S. liquefaciens és a S. grimesii.

A pszichrotróf Serratia fajok (például a S. liquefaciens) nyerstejben való előfordulása a hőkezelés után is minőségroimlást okozhat. Baglinière és munkatársai úgy találták, hogy a S. liquefaciens által termelt hőstabil Ser2 proteáz az UHT tej destabilizációjának jelentős tényezője lehet [11, 60].

Következtetésképpen megállapítható, hogy érdekes és hiánypótló kutatás lenne egy nemzetség-szintű vizsgálat, amelynek révén lehetőség nyílna a nyerstejek ilyen szempontú monitorozására, a Serratia fajok széleskörű detektálására. Az eredmények vélhetően nemcsak a tejgazdaság, tejipar szereplői számára nyújtanának hasznos információkat, hanem a hazai szabályozási és ellenőrzési gyakorlatra is hatással lehetnének.

6. Irodalom

[1] Friman, M.J., Eklund, M.H., Pitkälä, A.H., Rajala-Schultz, P.J., Rantala, M.H.J. (2019): Description of two Serratia marcescens associated mastitis outbreaks in Finnish dairy farms and a review of literature. Acta Veterinaria Scandinavica. 61, pp. 54. https://doi.org/10.1186/s13028-019-0488-7

[2] Joyner, J., Wanless, D., Sinigalliano, C.D., Lipp, E.K. (2014): Use of quantitative real-time PCR for direct detection of Serratia marcescens in marine and other aquatic environments. Applied and Environmental Microbiology. 80, pp. 1679-1683. https://doi.org/10.1128/AEM.02755-13

[3] Cleto, S., Matos, S., Kluskens, L., Vieira, M.J. (2012): Characterization of contaminants from a sanitized milk processing plant. PLoS ONE. 7(6), e40189. https://doi.org/10.1371/journal.pone.0040189

[4] Langsrud, S., Møretrø, T., Sundheim, G. (2003): Characterization of Serratia marcescens surviving in disinfecting footbaths. Journal of Applied Microbiology. 95, pp. 186-195. https://doi.org/10.1046/j.1365-2672.2003.01968.x

[5] Møretrø, T., Langsrud, S. (2017): Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Comprehensive Reviews in Food Science and Food Safety. 16, pp. 1022-1041. https://doi.org/10.1111/1541-4337.12283

[6] Iwaya, A., Nakagawa, S., Iwakura, N., Taneike, I., Kurihara, M., Kuwano, T., Gondaira, F., Endo, M., Hatakeyama, K., Yamamoto, T. (2005): Rapid and quantitative detection of blood Serratia marcescens by a real-time PCR assay: Its clinical application and evaluation in a mouse infection model. FEMS Microbiology Letters. 248, pp. 163-170. https://doi.org/10.1016/j.femsle.2005.05.041

[7] Bayramoglu, G., Buruk, K., Dinc, U., Mutlu, M., Yilmaz, G., Aslan, Y. (2011): Investigation of an outbreak of Serratia marcescens in a neonatal intensive care unit. Journal of Microbiology, Immunology and Infection. 44, pp. 111-115. https://doi.org/10.1016/j.jmii.2010.02.002

[8] Moradigaravand, D., Boinett, C.J., Martin, V., Peacock, S.J., Parkhill, J. (2016): Recent independent emergence of multiple multidrug-resistant Serratia marcescens clones within the United Kingdom and Ireland. Genome Research. 26, pp. 1101-1109. https://doi.org/10.1101/gr.205245.116

[9] Grimont, F., Grimont, P.A.D. (2006): The genus Serratia. Prokaryotes. 6, pp. 219-244. https://doi.org/10.1007/0-387-30746-X_11

[10] Sandner-Miranda, L., Vinuesa, P., Cravioto, A., Morales-Espinosa, R. (2018): The genomic basis of intrinsic and acquired antibiotic resistance in the genus Serratia. Frontiers in Microbiology. 9, pp. 828. https://doi.org/10.3389/fmicb.2018.00828

[11] Baglinière, F., Tanguy, G., Salgado, R.L., Jardin, J., Rousseau, F., Robert, B., Harel-Oger, M., Dantas Vanetti, M.C., Gaucheron, F. (2017): Ser2 from Serratia liquefaciens L53: A new heat stable protease able to destabilize UHT milk during its storage. Food Chemistry. 229, pp. 104-110. https://doi.org/10.1016/j.foodchem.2017.02.054

[12] Salgado, C.A., Baglinière, F., Vanetti, M.C.D. (2020): Spoilage potential of a heat-stable lipase produced by Serratia liquefaciens isolated from cold raw milk. LWT - Food Science and Technology. 126, 109289. https://doi.org/10.1016/j.lwt.2020.109289

[13] Barnum, D.A., Thackeray, E.L., Fish, N.A. (1958): An outbreak of mastitis caused by Serratia marcescens. Canadian Journal of Comparative and Medical Veterinary Science. 22, pp. 392-395.

[14] Malik, K., Tokkas, J., Goyal, S. (2012): Microbial pigments: A review. International Journal of Microbial Resource Technology. 1 (4), pp. 361-365.

[15] Petersen, L.M., Tisa, L.S. (2013): Friend or foe? A review of the mechanisms that drive Serratia towards diverse lifestyles. Canadian Journal of Microbiology. 59, pp. 627-640. https://doi.org/10.1139/cjm-2013-0343

[16] Darshan, N., Manonmani, H.K. (2015): Prodigiosin and its potential applications. Journal of Food Science and Technology. 52, pp. 5393-5407. https://doi.org/10.1007/s13197-015-1740-4

[17] Srimathi, R., Priya, R., Nirmala, M., Malarvizhi, A. (2017): Isolation, identification, optimization of prodigiosin pigment produced by Serratia marcescens and its applications. International Journal of Latest Engineering and Management Research. 2 (9), pp. 11-21.

[18] Giri, A.V., Anandkumar, N., Muthukumaran, G., Pennathur, G. (2004): A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiology. 4, pp. 11. https://doi.org/10.1186/1471-2180-4-11

[19] Mahlen, S.D. (2011): Serratia infections: From military experiments to current practice. Clinical Microbiology Reviews. 24, pp. 755-791. https://doi.org/10.1128/CMR.00017-11

[20] Analyzer of Bio-resource Citations (2020): Microorganism Search for Paper, Patent, Genome and Nucleotic. http://abc.wfcc.info/index.jsp. Hozzáférés 2020.04.21.

[21] Birla Institute of Scientific Research, Bioinformatics Centre (2015): Database of Biochemical Tests of Pathogenic Enterobacteriaceae Family. https://bioinfo.bisr.res.in/cgi-bin/project/docter/serratia.cgi. Hozzáférés 2020.04.21.

[22] LPSN (2020): List of Prokaryotic Names with Standing in Nomenclature. https://lpsn.dsmz.de/genus/serratia. Hozzáférés 2020.04.21.

[23] Kämpfer, P., Glaeser, S.P. (2016): Serratia aquatilis sp. nov., isolated from drinking water systems. International Journal of Systematic and Evolutionary Microbiology. 66, pp. 407-413. https://doi.org/10.1099/ijsem.0.000731

[24] Grimont, P.A.D., Jackson, T.A., Ageron, E., Noonan, M.J. (1988): Serratia entomophila sp. nov. associated with amber disease in the New Zealand grass grub Costelytra zealandica. International Journal of Systematic Bacteriology. 38, pp. 1-6. https://doi.org/10.1099/00207713-38-1-1

[25] Grimont, P.A.D., Grimont, F., Starr, M.P. (1979): Serratia ficaria sp. nov., a bacterial species associated with Smyrna figs and the fig wasp Blastophaga psenes. Current Microbiology. 2, pp. 277-282. https://doi.org/10.1007/BF02602859

[26] Anahory, T., Darbas, H., Ongaro, O., Jean-Pierre, H., Mion, P. (1998): Serratia ficaria: A misidentified or unidentified rare cause of human infections in fig tree culture zones. Journal of Clinical Microbiology. 36, pp. 3266-3272. https://doi.org/10.1128/JCM.36.11.3266-3272.1998

[27] Gavini, F., Ferragut, C., Izard, D., Trinel, P.A., Leclerc, H., Lefebvre, B., Mossel, D.A.A. (1979): Serratia fonticola, a new species from water. International Journal of Systematic Bacteriology. 29, pp. 92-101. https://doi.org/10.1099/00207713-29-2-92

[28] Grimont, P.A.D., Grimont, F., Irino, K. (1982): Biochemical characterization of Serratia liquefaciens sensu stricto, Serratia proteamaculans, and Serratia grimesii sp. nov.. Current Microbiology. 7, pp. 69-74. https://doi.org/10.1007/BF01568416

[29] Hennessy, R.C., Dichmann, S.I., Martens, H.J., Zervas, A., Stougaard, P. (2020): Serratia inhibens sp. nov., a new antifungal species isolated from potato (Solanum tuberosum). International Journal of Systematic and Evolutionary Microbiology. 70, pp. 4204-4211. https://doi.org/10.1099/ijsem.0.004270

[30] Bizio, B. (1823): Lettera di Bartolomeo Bizio al chiarissimo canonico Angelo Bellani sopra il fenomeno della polenta porporina. Biblioteca Italiana, o sia Giornale di Letteratura, Scienze, e Arti (Anno VIII). 30, pp. 275-295.

[31] Williams, R.P., Gott, C.L., Qadri, S.M.H., Scott, R.H. (1971): Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens. Journal of Bacteriology. 106, pp. 438-443. https://doi.org/10.1128/JB.106.2.438-443.1971

[32] Wang, J., Zheng, M.L., Jiao, J.Y., Wang, W.J., Li, S., Xiao, M., Chen, C., Qu, P.H., Li, W.J. (2019): Serratia microhaemolytica sp. nov., isolated from an artificial lake in Southern China. Antonie Van Leeuwenhoek. 112, pp. 1447-1456. https://doi.org/10.1007/s10482-019-01273-9

[33] García-Fraile, P., Chudíčková, M., Benada, O., Pikula, J., Kolařík, M. (2015): Serratia myotis sp. nov. and Serratia vespertilionis sp. nov., isolated from bats hibernating in caves. International Journal of Systematic and Evolutionary Microbiology. 65, pp. 90-94. https://doi.org/10.1099/ijs.0.066407-0

[34] Zhang, C.X., Yang, S.Y., Xu, M.X., Sun, J., Liu, H., Liu, J.R., Liu, H., Kan, F., Sun, J., Lai, R., Zhang, K.Y. (2009): Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae). International Journal of Systematic and Evolutionary Microbiology. 59, pp. 1603-1608. https://doi.org/10.1099/ijs.0.003871-0

[35] Grimont, P.A.D., Grimont, F., Richard, C., Davis, B.R., Steigerwalt, A.G., Brenner, D.J. (1978): Deoxyribonucleic acid relatedness between Serratia plymuthica and other Serratia species, with a description of Serratia odorifera sp. nov. (type strain: ICPB 3995). International Journal of Systematic Bacteriology. 28, pp. 453-463. https://doi.org/10.1099/00207713-28-4-453

[36] Van Houdt, R., Moons, P., Jansen, A., Vanoirbeek, K., Michiels, C.W. (2005): Genotypic and phenotypic characterization of a biofilm-forming Serratia plymuthica isolate from a raw vegetable processing line. FEMS Microbiology Letters. 246, pp. 265-272. https://doi.org/10.1016/j.femsle.2005.04.016

[37] Zhang, C.W., Zhang, J., Zhao, J.J., Zhao, X., Zhao, D.F., Yin, H.Q., Zhang, X.X. (2017): Serratia oryzae sp. nov., isolated from rice stems. International Journal of Systematic and Evolutionary Microbiology. 67, pp. 2928-2933. https://doi.org/10.1099/ijsem.0.002049

[38] Lehman, K.B., Neumann, R. (1896): Atlas und Grundriss der Bakeriologie und Lehrbuch der Speziellen Bakteriologischen Diagnostik, Volume 11st Ed. J.F. Lehmann, München.

[39] Breed, R.S., Murray, E.G.D., Hitchens, A.P. (Eds.) (1948): Bergey’s Manual of Determinative Bacteriology, 6th ed. Williams and Wilkins Co., Baltimore, MD, USA. pp. 1-1529.

[40] Paine, S.G., Stansfield, H. (1919): Studies in bacteriosis. III. A bacterial leaf spot disease of Peotea cynaroides, exhibiting a host reaction of possibly bacteriolytic nature. Annals of Applied Biology. 6, pp. 27-39. https://doi.org/10.1111/j.1744-7348.1919.tb05299.x

[41] Grimont, P.A.D., Grimont, F., Starr, M.P. (1978): Serratia proteamaculans (Paine and Stansfield) comb. nov., a senior subjective synonym of Serratia liquefaciens (Grimes and Hennerty) Bascomb et al. International Journal of Systematic Bacteriology. 28, pp. 503-510. https://doi.org/10.1099/00207713-28-4-503

[42] Ashelford, K.E., Fry, J.C., Bailey, M.J., Day, M.J. (2002): Characterization of Serratia isolates from soil, ecological implications and transfer of Serratia proteamaculans subsp. quinovora Grimont et al. 1982 to Serratia quinovorans corrig., sp. nov.. International Journal of Systematic and Evolutionary Microbiology. 52, pp. 2281-2289. https://doi.org/10.1099/00207713-52-6-2281

[43] Stapp, C. (1940): Bacterium rubidaeum nov. spec. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. II. 102, pp. 252-260.

[44] Ewing, W.H., Davis, B.R., Fife, M.A., Lessel, E.F. (1973): Biochemical characterization of Serratia liquefaciens (Grimes and Hennerty) Bascomb et al. (formerly Enterobacter liquefaciens) and Serratia rubidaea (Stapp) comb. nov. and designation of type and neotype strains. International Journal of Systematic Bacteriology. 23, pp. 217-225. https://doi.org/10.1099/00207713-23-3-217

[45] Sabri, A., Leroy, P., Haubruge, E., Hance, T., Frère, I., Destain, J., Thonart, P. (2011): Isolation, pure culture and characterization of Serratia symbiotica sp. nov., the R-type of secondary endosymbiont of the black bean aphid Aphis fabae. International Journal of Systematic and Evolutionary Microbiology. 61, pp. 2081-2088. https://doi.org/10.1099/ijs.0.024133-0

[46] Bhadra, B., Roy, P., Chakraborty, R. (2005): Serratia ureilytica sp. nov., a novel urea-utilizing species. International Journal of Systematic and Evolutionary Microbiology. 55, pp. 2155-2158. https://doi.org/10.1099/ijs.0.63674-0

[47] Starr, M.P., Grimont, P.A.D., Grimont, F., Starr, P.B. (1976): Caprylate-thallous agar medium for selectively isolating Serratia and its utility in the clinical laboratory. Journal of Clinical Microbiology. 4, pp. 270-276.

[48] BioMérieux (2015): API & ID 32 Identification Databases. https://www.biomerieux-diagnostics.com/sites/clinic/files/9308960-002-gb-b-apiweb-booklet.pdf. Hozzáférés 2020.04.02.

[49] Primerdesign (2019): Serratia marcescens Genesig kit. https://www.genesig.com/products/9405-serratia-marcescens. Hozzáférés 2020.04.02.

[50] Hejazi, A., Keane, C.T., Falkiner, F.R. (1997): The use of RAPD-PCR as a typing method for Serratia marcescens. Journal of Medical Microbiology. 46, pp. 913-919. https://doi.org/10.1099/00222615-46-11-913

[51] Zhu, H., Zhou, W.Y., Xu, M., Shen, Y.L., Wei, D.Z. (2007): Molecular characterization of Serratia marcescens strains by RFLP and sequencing of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Letters in Applied Microbiology. 45. pp. 174-178. https://doi.org/10.1111/j.1472-765X.2007.02166.x

[52] Bussalleu, E., Althouse, G.C. (2018): A PCR detection method for discerning Serratia marcescens in extended boar semen. Journal of Microbiological Methods. 151, pp. 106-110. https://doi.org/10.1016/j.mimet.2018.06.012

[53] Zhu, H., Sun, S.J., Dang, H.Y. (2008): PCR detection of Serratia spp. using primers targeting pfs and luxS genes involved in AI-2-dependent quorum sensing. Current Microbiology. 57, pp. 326-330. https://doi.org/10.1007/s00284-008-9197-6

[54] National Center for Biotechnology Information (2020): Search database. https://www.ncbi.nlm.nih.gov/. Hozzáférés 2020.03.20.

[55] Insightful Science (2020): SnapGene Software. https://www.snapgene.com/. Hozzáférés 2020.03.20.

[56] Machado, S.G., Baglinière, F., Marchand, S., Van Coillie, E., Vanetti, M.C.D., De Block, J., Heyndrick, M. (2017): The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Frontiers in Microbiology. 8, p. 302. https://doi.org/10.3389/fmicb.2017.00302

[57] Lafarge, V., Ogier, J.C., Girard, V., Maladen, V., Leveau, J.Y., Gruss, A., Delacroix-Buchet, A. (2004): Raw cow milk bacterial population shifts attributable to refrigeration. Applied and Environmental Microbiology. 70, pp. 5644-5650. https://doi.org/10.1128/AEM.70.9.5644-5650.2004

[58] Ribeiro Jr., J.C., de Oliveira, A.M., de G. Silva, F., Tamanini, R., de Oliveira, A.L.M., Beloti, V. (2018): The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. Journal of Dairy Science. 101, pp. 75-83. https://doi.org/10.3168/jds.2017-13069

[59] Decimo, M., Morandi, S., Silvetti, T., Brasca, M. (2014): Characterization of gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk. Journal of Food Science. 79, pp. 81-90. https://doi.org/10.1111/1750-3841.12645

[60] Baglinière, F., Salgado, R.L., Salgado, C.A., Dantas Vanetti, M.C. (2017): Biochemical characterization of an extracellular heat-stable protease from Serratia liquefaciens isolated from raw milk. Journal of Food Science. 82, pp. 952-959. https://doi.org/10.1111/1750-3841.13660

Tovább a cikk olvasásához


Legfrissebb szám



Támogató és együttműködő partnereink

TÉMAKERESÉS