Cikk letöltése PDF formátumban
Élelmiszerekből izolált staphylococcus fajok antibiotikum rezisztencia vizsgálata
DOI: https://doi.org/10.52091/EVIK-2021/2-1-HUN
Érkezett: 2021. február – Elfogadva: 2021. április
Szerzők
- Horváth Brigittaa*horvath.brigitta920108@gmail.comhttps://orcid.org/0000-0002-7861-0824
- Peles Ferenc Dr.apelesf@agr.unideb.huhttps://orcid.org/0000-0002-9226-3777
- Gasparikné Reichardt Judit Dr.dreichardt.judit@wessling.huhttps://orcid.org/0000-0003-3000-6158
- Pocklán Editdpocklan.edit@wessling.huhttps://orcid.org/0000-0001-8942-0674
- Sipos Rita Dr.bsipos.rita@biomi.huhttps://orcid.org/0000-0002-1770-769X
- Erős Ágnesberos.agnes@biomi.huhttps://orcid.org/0000-0001-7258-615X
- Petróczki Flóra Máriaapetroczki.flora@agr.unideb.huhttps://orcid.org/0000-0001-9878-4656
- Szűcs Kata Dorinacszucs.katad@gmail.comhttps://orcid.org/0000-0002-8728-3714
- Albert Ervinealbert.ervin@univet.huhttps://orcid.org/0000-0002-2244-7538
- Micsinai Adrienn Dr.dmicsinai.adrienn@wessling.huhttps://orcid.org/0000-0001-5745-4589
a Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Élelmiszertudományi Intézet
b BIOMI Kft.
c Pázmány Péter Katolikus Egyetem
d WESSLING Hungary Kft.
e Állatorvostudományi Egyetem
* Levelező szerző: horvath.brigitta920108@gmail.com
Kulcsszavak
élelmiszer, Staphylococcus, antibiotikum rezisztencia, MALDI-TOF-MS, baktérium identifikálás, élelmiszerbiztonság, humán patogén, nozokómiás fertőzés
1. Összefoglalás
A methicillin-rezisztens Staphylococcus aureus (MRSA) törzsek élelmiszerláncban előforduló jelenlétét számos tanulmány igazolta az Európai Unióban, azonban Magyarországon kevés adat áll rendelkezésünkre ezzel kapcsolatban. Jelen vizsgálat célja az élelmiszerekből izolált Staphylococcus törzsek antibiotikum rezisztenciá-jának vizsgálata klasszikus mikrobiológiai, molekuláris biológiai módszerekkel és MALDI-TOF-MS technikával, továbbá az antibiotikum rezisztens törzsek multilókusz szekvencia tipizálása (MLST). A vizsgálat során 47 koaguláz-pozitív (CPS) és 30 koaguláz-negatív Staphylococcus (CNS) izolátumot gyűjtöttünk. A MALDI-TOF-MS vizsgálat során minden CPS izolátum (n=47) S. aureus fajnak bizonyult, míg a CNS törzsek esetében 8 különböző fajt azonosítottunk. Két S. aureus törzs esetében állapítottunk meg methicillin-rezisztenciát, amelyek közül az egyik izolátum eddig még nem ismert szekvencia típusba, míg a másik MRSA törzs az ST398 típusba tartozott, amely a mezőgazdasági haszonállatokból izolált MRSA törzsek leggyakoribb típusa az EU/EGT területén.
(Az „MRSA” rövidítést köznapi szóhasználatban, de esetenként a szakirodalomban is gyakran a „multirezisztens Staphylococcus aureus” megjelölésére használják. A szerzők kéziratában - helyesen a methicillin-rezisztens kórokozót jelölik így. A Szerk.)
2. Bevezetés és irodalmi áttekintés
Az antibiotikum rezisztens mikroorganizmusok által okozott nozokómiális infekciók (kórházhigiénés fertőzések – a szerk.) száma minden országban növekedést mutat, ezáltal egyre nagyobb kihívás elé állítva az egészségügyi ellátórendszert [1, 2]. A helyzetet tovább súlyosbítja az a tény, hogy az antibiotikum rezisztens Staphylococcus fajok már nem csak a közösségekben és az egészségügyben, hanem az intenzív állattartásban, ezáltal az élelmiszerláncban is megjelentek [3].
A Staphylococcus fajokban az antibiotikum rezisztenciával és virulenciával kapcsolatos gének a mobilis genetikai elemekben (MGE) találhatók, mint például a kromószóma kazettákban, patogenitási szigeteken, plazmidokban vagy transzpozonokban [4]. A methicillinnel szembeni rezisztenciáért a mecA gén felelős: a gén egy módosított penicillin-kötő fehérjét kódol, amely csökkenti a legtöbb béta-laktám antibiotikum, így a penicillin és a methicillin kötődési affinitását. A mecA gén a Staphylococcus kromószóma kazettán (SSCmec) található, amely egy MGE csoport és csak a Staphylococcus fajokban található meg [5]. A mecA gén Staphylococcus fajok közötti átvitelének mechanizmusa nem ismert, azonban bizonyítékok támasztják alá a horizontális géntranszfert a koaguláz-pozitív és koaguláz-negatív Staphylococcus fajok között [6].
A methicillin-rezisztens Staphylococcus aureus (MRSA) törzsek élelmiszerláncban előforduló jelenlétéről már több tanulmány beszámolt. Szerzőik egy része állati eredetű élelmiszermintákból, másik része pedig nyers húsmintákból (sertés, hal, baromfi) izolált törzsek vizsgálatát végezte el. Hollandiában 2009-ben 2217 különböző élelmiszermintát vizsgáltak meg, amelynek a 12%-a MRSA törzsnek bizonyult [7], míg egy dániai vizsgálat során 153 sertéshúsmintának a 4,6%-a, az importált 173 sertéshúsmintának pedig a 7,5%-a volt fertőzött MRSA törzzsel [8]. Németországban nyers tejből, sertéshúsból, pulykahúsból és brojler csirkehúsból is azonosítottak MRSA törzseket [9]. Magyarországon egy tehenészeti telep 595 egyedi tejmintájából 27 db MRSA izolátumot azonosítottak [10], egy másik vizsgálatban 42 telep 626 S. aureus izolátuma közül csak 4 törzs bizonyult methicillin rezisztensnek [11]. Ezeken túl azonban más élelmiszerkategóriából származó és fogyasztásra kész élelmiszerekből eddig nem vizsgálták az MRSA jelenlétét. A törzsek molekuláris tipizálási eredményei rámutattak arra, hogy az MRSA számos típusa jelen van az élelmiszerláncban a különböző országokban [12], azonban a leggyakrabban a CC398-as típus fordult elő, amely az EU és az EGT területén a mezőgazdasági haszonállatokból izolált MRSA törzsek 85%-át teszi ki [13, 14, 7,15].
A további methicillin-rezisztens Staphylococcus (MRS) fajok előfordulását az élelmiszerekben azonban már kevesebb tanulmány vizsgálta. Nigériában 255 tradicionális ételből származó izolátumból 13 Staphylococcus faj (S. xylosus, S. epidermidis, S. simulans) mutatott methicillin-rezisztenciát [16]. Egy Lengyelországban végzett tanulmány során 58 készételből izolált törzsből 33 Staphylococcus törzs (S. epidermidis, S. simulans, S. xylosus, S. hycus, S. lentus, S. saprophyticus) mutatott rezisztenciát legalább egy fajta antibiotikummal szemben [17].
Az Európai Unióban az élelmiszerekből és haszonállatokból izolált Staphylococcus törzsek antibiotikum rezisztenciájának ellenőrzése jelenleg önkéntes, ezért 2016-ban csak Németország, Svájc, Dánia és Spanyolország jelentett ezzel kapcsolatos információt. Az MRSA előfordulási gyakorisága országonként eltérő volt, ám az összehasonlítás során figyelembe kell venni, hogy a vizsgálatokat eltérő állatfajokból, húsokból és húskészítményekből izolált törzseken végezték el [18]. A humán fertőzések kis hányada vezethető vissza a CC398-as típusú MRSA törzsekre és azok is legfőképp szakmai expozíciókra korlátozódnak, mint az állatgyógyászat és az intenzív állattartás. Ennek ellenére a CC398-as típusú MRSA törzsekben kimutatható virulencia faktorok lehetővé teszik a magas patogenitást, így a folyamatos revízió mind az állatokban, mind az élelmiszerekben elengedhetetlen [19]. A felügyelet szükségességét az egyéb Staphylococcus fajok antibiotikum rezisztenciájának esetleges fennállása is indokolja, amely lehetőséget nyújt a rezisztencia terjedésére, és veszélyt jelent a fogyasztók egészségére.
A sikeres felügyeleti rendszer elengedhetetlen feltétele, hogy egy egységes, gazdasági szempontból is elfogadható, gyors és megbízható módszer álljon rendelkezésre a mikroorganizmusok faji szintű azonosításában és antibiotikum rezisztencia meghatározásában, amelynek ígéretes alappillére lehet a fehérje azonosításon alapuló (peptide mass fingerprint) mátrix-asszisztált lézer deszorpciós, ionizációs, repülési idő mérésén alapuló tömegspektrometria (MALDI-TOF-MS). A 2000-es évek kezdetén számos tanulmány számolt be olyan specifikus fragment ionokról, amelyek lehetővé teszik az antibiotikum rezisztens Staphylococcus törzsek gyors azonosítását. A legtöbbet vizsgált biomarker a 2414 m/z értékű fragment ion volt, amelynek megjelenése a tömegspektrumban az MRSA törzsekre jellemző psm-mec expressziójával korrelál [20]. A detektáláshoz és diszkriminációhoz a 2414 m/z értékű fragment ion alkalmazhatóságát több tanulmány is igazolta [21, 22].
Az MRSA törzsek biomarkereinek vizsgálatain kívül más tanulmányok további Staphylococcus fajok methicillin-rezisztencia specifikus fragment ion csúcsait elemezték. Egy korábbi cikkben két specifikus fragment ion-értéket határoztak meg: a 7239 m/z értékű ion fragment-csúcsot, amely a methicillin-rezisztens S. epidermidis és a 9674 m/z fragment-ion csúcsot, amely a methicillin-rezisztens S. haemolyticus biomarkere [23].
Saját kísérleteink célja az élelmiszerekből izolált Staphylococcus törzsek methicillin rezisztenciájának vizsgálata klasszikus mikrobiológiai, molekuláris biológiai módszerekkel és MALDI-TOF-MS technikával, továbbá az antibiotikum rezisztens törzsek multilókusz szekvencia tipizálása volt (MLST) a törzsek epidemiológiai vizsgálata céljából.
3. Vizsgálati anyag és módszer
3.1. Gyűjtött izolátumok és tenyésztési körülmények
A WESSLING Hungary Kft. Mikrobiológiai laboratóriumában a 2019. augusztus és 2020. szeptember közötti időszakban az MSZ EN ISO 6888-1:2008 szabvány előírásai alapján izolált 77 Staphylococcus izolátumot vizsgáltunk. Az izolátumokat 37 °C-on, 24±1 órán keresztül Baird-Parker (Biokar, Franciaország) szelektív táptalajon tenyésztettük és a Staphylococcusokra jellemző kolóniákat Columbia véres agarra (Neogen, UK) oltottuk át (37 °C, 24±1 óra). A tenyésztés során 47 törzs mutatott pozitív koaguláz reakciót, míg 30 izolátum koaguláz-negatívnak bizonyult, amelyet latex agglutinációs gyorsteszttel (PASTOREX™ STAPH-PLUS) is igazoltunk. Az izolátumokat nyers húsból, húskészítményekből és fogyasztásra készételekből gyűjtöttük: baromfi (n=14), marha (n=5), sertés (n=42), vad (n=1), hal (n=1), tejtermék (n=3), készételek (n=3), zöldségek (n=2) és száraztészta (n=6).
3.2. Izolátumok azonosítása MALDI-TOF-MS technikával
A gyűjtött 77 izolátum azonosítását Bruker Microflex LT MALDI-TOF tömegspektrométerrel és a MALDI BioTyper 3.1 (Bruker Daltonics) szoftverrel végeztük el. Hangyasavas szuszpendálási protokollt alkalmaztunk, amely során Columbia véres agarról egy önálló telepet vettünk fel egy steril kacs segítségével, majd 40 µl hangyasavban szuszpendáltunk el. A szuszpenzióhoz 40 µl acetonitrilt adtunk, amelyből a lemez egyik pozíciójára 1 μl-t cseppentettünk fel. A csepp beszáradását követően a mintákra 1 μl α-HCCA (10 mg/ml α-Cyano-4-hydroxycinnamic acid) mátrix oldatot vittünk fel és a mintát ismét hagytuk beszáradni. Valamennyi minta esetében 6 párhuzamos mérést végeztünk.
Az izolátumok azonosítása során MALDI Biotyper 3.1 szoftvert alkalmaztunk, amely a kapott tömegspektrumokat az adatbázisában szereplő referencia tömegspektrumokhoz hasonlítja és egy megfelelőségi faktort (score) számít ki. 2,300 – 3,000 log score érték esetén az azonosság igen valószínű. Ekkora log score érték esetén a faj azonosítottnak tekinthető. Amennyiben 2,000 – 2,299 közötti log score értéket kapunk, az azonosság kisebb, így ez esetben csak a mikroorganizmus nemzetsége tekinthető azonosítottnak. 1,700 – 1,999 log score érték között a nemzetség (genus) azonosítása sem tekinthető megfelelően biztosnak. Ha az értékelő szoftver 0,000 – 1,699 közötti log score értéket ad meg, az azonosítást sikertelennek kell tekinteni. A vizsgálatba bevont koaguláz-pozitív Staphylococcus törzsek azonosítását korábban végeztük el [24].
3.3. Antibiotikum érzékenységi vizsgálat
3.3.1. Methicillin-rezisztencia specifikus csúcsok vizsgálata MALDI-TOF-MS módszerrel
A kapott tömegspektrumokat a flexAnalysis 3.4 szoftverbe (Bruker Daltonics) exportáltuk és elvégeztük a tömegspektrumok manuális elemzését és összehasonlítását. A tömegspektrumok simítását a Savitzky–Golay szűrővel, az alapvonal korrekcióját pedig a TopHat algoritmussal végeztük el. Az elemzés során a methicillin-rezisztencia (MR) specifikus fragment ionok jelenlétét vizsgáltuk (1. táblázat).

3.3.2. Korongdiffúziós módszer
A törzsek antibiotikum-rezisztenciájának vizsgálata során a CLSI (Clinical and Laboratory Standards Institute) által meghatározott előírásoknak (2019) megfelelően jártunk el [25]. A 0,5 McFarland egységnyi baktérium-szuszpenziót Mueller-Hinton agar (Oxoid, UK) felületére szélesztettük, majd a táptalaj felületére helyeztük a Cefoxitin 30 μg korongokat. A törzseket 37 °C-on, 18 órán át inkubáltuk. Az MRSA törzsek esetében a feltisztulási zóna referencia tartománya 6-19 mm volt, míg mecA negatív fajoknál 20-32 mm.
3.3.3. Szelektív differenciáló agar
Az antibiotikum rezisztencia vizsgálatok során továbbá a CHROMagar MRSAII szelektív differenciáló táptalajt (BD, UK) alkalmaztunk, amely a methicillin-rezisztens Staphylococcus aureus fajok kimutatására szolgál. Az izolátumokat 37 °C-on 24-48 órán keresztül inkubáltuk aerob körülmények között. MRSA baktériumnak tekintettük azokat a törzseket, amelyek morfológiailag Staphylococcusokhoz hasonló mályvaszínű telepeket képeztek. A korongdiffúziós (Cefoxitin 30 µg) módszert és az MRSA CHROMagar vizsgálatot minden élelmiszerből izolált törzs (n=77) esetében kétszer ismételtük meg. A vizsgálatok során pozitív kontrollként az ATCC 33591 referencia MRSA törzset, negatív kontrollként pedig az ATCC 29213 MSSA törzset használtuk.
3.3.4. mecA génkomplex
A mecA gén kimutatásának vizsgálatát a Dán Nemzeti Élelmiszertudományi Intézet (National Food Institute – NFI) 2012-ben kiadott protokollja alapján végeztük el [26]. A vizsgálat során pozitív kontrollként az ATCC 43300 MRSA törzset, míg negatív kontrollként az ATCC 29213 MSSA törzset használtuk. A baktériumokból genomi DNS-t izoláltunk, majd a mecA génszakaszt PCR segítségével felszaporítottuk. Az alkalmazott primereket a 2. táblázat tartalmazza.

3.4. A methicillin-rezisztens Staphylococcus törzsek MLST vizsgálata
THOMAS és munkatársai [27] tanulmánya alapján a baktériumokból genomi DNS-t izoláltunk, majd a 7 db Staphylococcus aureus fajra specifikus génszakaszt PCR segítségével felszaporítottuk (3. táblázat). Meghatároztuk a megtisztított PCR termékek nukleotid sorrendjét majd a szekvencia adatokat BioNumerics 7.6 szoftverben értékeltük.

4. Eredmények
4.1. Az izolált törzsek azonosítási eredményei
A MALDI-TOF-MS vizsgálat során minden koaguláz-pozitív Staphylococcus (CPS) törzs (n=47) S. aureus fajnak bizonyult (4. és 6. táblázat). A koaguláz-negatív Staphylococcus (CNS) törzsek esetében pedig 8 különböző fajt (S. xylosus, S. saprophyticus, S. pasteuri, S. epidermidis, S. warneri, S. chromogenes, S. piscifermentans, S. haemolyticus) azonosítottunk (4. és 7. táblázat). A CNS (n=30) izolátumok 30%-a S. warneri fajnak, míg 23%-a S. pasteuri fajnak bizonyult. A S. aureus törzsek 70%-át, míg a CNS törzsek mindegyikét hús és húskészítményekből izoláltuk (1. és 2. ábra). A S. aureus törzsek esetében a hús és húskészítmények 64%-a, míg a CNS törzsek 70%-a sertésből származott. A hús és húskészítményeken belül, a baromfiból és marhából származó izolátumok megoszlása közel azonos volt.


Az izolátumok átlag azonosítási log score értékeit és azok szórását a 4. táblázat foglalja össze. A S. aureus izolátumok átlag azonosítási log score értéke meghaladta a 2,400-et. A legalacsonyabb log score érték 2,304 volt, azonban még ebben az esetben is biztonságosnak tekinthető az azonosítás. A CNS izolátumok vizsgálata során, minden fajt 2,300 log score érték felett azonosítottunk és a szórás egyik esetben sem haladta meg a 0,1 értéket.

4.2. A MALDI-TOF-MS technikával meghatározott methicillin-rezisztencia eredményei
Az izolátumokból nyert tömegspektrumok elemzése során 3 antibiotikum-rezisztencia specifikus csúcsot vizsgáltunk meg. A 2414 m/z csúcs a mecA gén egyik fehérjeterméke [28], ezért ennek a csúcsnak a jelenlétét illetve hiányát minden törzs esetében megvizsgáltuk. A 7239 m/z csúcs detektálhatóságát csak a S. epidermidis fajokban, míg a 9674 m/z csúcs jelenlétét/hiányát csak a S. haemolyticus fajokban vizsgáltuk a csúcsok fajspecificitása miatt.
A 2414 m/z csúcsot a 77 izolátum közül, két S. aureus törzsben detektáltuk, amelyek közül az egyik libamájból (SA-17) a másik pedig sertés tarjából (SA-47) származik. A további 75 izolátum esetében ez a csúcs még alacsony intenzitással sem jelent meg (5. táblázat). Az elemzés során a methicillin-rezisztensnek bizonyult két S. aureus törzset pirossal, míg a többi, methicillin-rezisztencia specifikus csúcsot nem tartalmazó S. aureus törzsek tömegspektrumait feketével jelöltük (3. és 4. ábra).
A 7239 m/z egyik S. epidermidis törzsben (n=4) sem volt detektálható és a 9674 m/z csúcs a 4 S. haemolyticus faj egyikében sem jelent meg.



4.3. A korongdiffúziós módszer és az MRSA CHROMagar szelektív differenciáló agar eredményei
A 77 törzs vizsgálata során 75 törzs esetében a feltisztulási zóna átmérője 23-29 mm közé esett. Egy libamájból izolált törzs (SA-17) feltisztulási zónája 9 mm, egy sertéstarjából izolált törzs (SA-47) feltisztulási zónája pedig 17 mm átmérőjű volt és ugyanezen törzsek mályvaszínű telepeket képeztek az MRSA CHROMagar szelektív differenciáló táptalajon is (6. és 7. táblázat).


4.4. mecA gén kimutatás eredményei
A MALDI-TOF-MS vizsgálatok, a korongdiffúziós módszer és az MRSA szelektív, differenciáló táptalaj eredményei alapján kiderült, hogy a libamájból és sertés tarjából izolált S. aureus törzsek (SA-17, SA-47) methicillin-rezisztenciát hordoznak, amelyet a két törzsben kimutatható, a PBP2a szintéziséért felelős mecA gén erősített meg (6. táblázat).
4.5. Az MRSA törzsek MLST típusa
A vizsgálat során elvégeztük a két MRSA törzs MLST tipizálását is, amely során a PubMLST honlapon (https://pubmlst.org/saureus/) elérhető adatbázisban szereplő adatokat használtuk. A BioNumerics 7.6 szoftver a két MRSA törzs közül csak a sertés tarjából izolált törzs esetében tudta hozzárendelni a szekvencia típust.
A libamájból izolált törzs egy eddig még nem ismert szekvencia típusba, míg a sertés tarjából izolált törzs a 398-as szekvencia típusba tartozott (8. táblázat).

5. Összefoglalás és következtetés
A vizsgálat során különböző élelmiszer mátrixokból 77 Staphylococcus izolátumot gyűjtöttünk az MSZ EN ISO 6888-1:2008 szabványban leírt módszerek alapján. A szabvány ugyan lehetővé teszi a koaguláz-pozitív és koaguláz-negatív Staphylococcus fajok elkülönítését, azonban a faji identifikálást nem, amely a fajok eltérő virulencia faktorai és patogenitása szempontjából számottevő. Az élelmiszerekből izolált 47 koaguláz-pozitív és 30 koaguláz-negatív Staphylococcus törzs azonosítását MALDI-TOF-MS technikával végeztük el, magas azonosítási log score értékekkel. Emellett a kapott tömegspektrumok elemzésével, korábbi tanulmányokban meghatározott methicillin-rezisztencia specifikus ion fragment-értékek alapján két S. aureus törzs esetében methicillin-rezisztenciát állapítottunk meg, amelyet korongdiffúziós módszerrel, szelektív differenciáló agarral és a mecA gén kimutatásával igazoltunk. A specifikus ion fragment értékeknek köszönhetően jelentősen csökkenthető a diagnosztikai idő, amely gazdasági és terápiás szempontból sem elhanyagolható. Azt azonban figyelembe kell vennünk, hogy az MRSA törzsek nagy variabilitásának köszönhetően ezeknek az ion fragment értékeknek a szenzitivitása és specificitása nem 100%-os, így megerősítő vizsgálatok elvégzése szükséges.
Az élelmiszerekből izolált két MRSA törzsnek elvégeztük a multilókusz szekvencia tipizálását (MLST), a törzsek epidemiológiai vizsgálata céljából. A sertéshúsból származó izolátum az ST398 típusba tartozott, amely a mezőgazdasági haszonállatokból izolált MRSA törzsek leggyakoribb típusa az EU/EGT területén. Figyelembe véve azonban az ST398-as típusú törzsek specifikus gazdaszervezet adaptációs képességeit, miszerint azok nem csak sertésekben, hanem más állatfajokban és a humán szervezetben is képesek megtapadni, a kontamináció és a fertőződés számos módon létrejöhet az élelmiszer-feldolgozás technológiai lépései során is.
Tekintve, hogy az élelmiszerekből izolált 47 S. aureus törzs közül 2 törzs is methicillin-rezisztensnek bizonyult, e tény igazolja a globálisan növekvő antibiotikum-rezisztencia okozta veszélyeket, ezáltal a helyzet súlyosságát és aktualitását is jelzi.
6. Köszönetnyilvánítás
A tanulmány a WESSLING Hungary Kft., a BIOMI Kft. és az Innovációs és Technológiai Minisztérium ÚNKP-19-3-III kódszámú Új Nemzeti Kiválóság Programjának szakmai támogatásával készült.
7. Irodalom
[1] Böröcz, K. (2001): A magyarországi nosocomialis MRSA járványok tapasztalatai (1993-2000). Epidemiológiai Információs Hetilap. 8. (10-11).
[2] Böröcz, K. (2005): Az Országos tisztifőorvos állásfoglalása a methicillin-rezisztens Staphylococcus aureus (MRSA) törzsek által okozott, egészségügyi ellátással összefüggő fertőzések megelőzésükről és terjedésük megakadályozásáról. Epidemiológiai Információs Hetilap. 12. (5).
[3] Jungwhan, C., Kidon, S., Saeed, K. (2017): Methicillin-Resistant Staphylococcus aureus (MRSA) in Food-Producing and Companion Animals and Food Products. Frontiers in Staphylococcus aureus. Intechopen.
[4] Lim, D., Strynadka, N. C. J. (2002): Structural basis for the β-lactam resistance of PBP2a from metichillin-resistant Staphylococcus aureus. Nature Structural Biology. 9 (11), pp. 870-876. https://doi.org/10.1038/nsb858
[5] Ito, T., Katayama, Y., Hiramatsu, K. (1999): Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob Agents Chemother. 43 (6), pp. 1449-58. https://doi.org/10.1128/AAC.43.6.1449
[6] Wielders, C. L., Vriens, M. R., Brisse, S., De Graaf-Miltenburg, L. A., Troelstra, A., Fleer, A., Schmitz, F. J., Verhoef, J., Fluit, A. C. (2001): In-vivo transfer of mecA DNA to Staphylococcus aureus [corrected]. Lancet. 26; 357 (9269), pp. 1674-1675. https://doi.org/10.1016/S0140-6736(00)04832-7
[7] Köck, R., Harlizius, J., Bressan, N., Laerberg, R., Wieler, L. H., Witte, W., Deurenberg, R. H., Voss, A., Becker, K., Friedrich, A. W. (2009): Prevalence and Molecular Characteristics of Methicillin-Resistant Staphylococcus Aureus (MRSA) Among Pigs on German Farms and Import of Livestock-Related MRSA Into Hospitals. European Journal of Clinical Microbiology & Infectious Diseases. 28 (11), pp. 1375-1382. https://doi.org/10.1007/s10096-009-0795-4
[8] Agersø, Y., Hasman, H., Cavaco, L. M., Pedersen, K., Aarestrup, F. M. (2012): Study of methicillin-resistant Staphylococcus aureus (MRSA) in Danish pigs at slaughter and in imported retail meat reveals a novel MRSA type in slaughter pigs. Veterinary Microbiology. 157 (1-2), pp. 246-250. https://doi.org/10.1016/j.vetmic.2011.12.023
[9] Argudín, M. A., Tenhagen, B. A., Fetsch, A., Sachsenröder, J., Käsbohrer, A. (2011): Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Applied and Environmental Microbiology. 77 (9), pp. 3052-3060 https://doi.org/10.1128/AEM.02260-10
[10] Juhász-Kaszanyitzky, E., Jánosi, S., Somogyi, P., Dán, A., Van Der, A., Graaf-Van Bloois, L. (2007): MRSA transmission between cows and humans. Emerging Infectious Diseases. 13 (4), pp. 630-632. https://doi.org/10.3201/eid1304.060833
[11] Albert, E., Sipos, R., Jánosi, Sz., Kovács, P., Kenéz, Á., Micsinai, A., Noszály, Zs., Biksi, I. (2020): Occurrence and characterisation of methicillin-resistant Staphylococcus aureus isolated from bovine milk in Hungary. Acta Veterinaria Hungarica. 68 (3) pp. 236-241. https://doi.org/10.1556/004.2020.00040
[12] Wendlandt, S., Schwarz, S., Silley, P. (2013): Methicillin-Resistant Staphylococcus aureus: A Food-Borne Pathogen? Annual Review of Food Science and Technology. 4, pp. 117-139. https://doi.org/10.1146/annurev-food-030212-182653
[13] Bosch, T., Verkade, E., Van Luit, M., Landman, F., Kluytmans, J., Schouls, L. M. (2015): Transmission andpersistence of livestock-associated methicillin-resistant Staphylococcus aureus among veterinarians and their household members. Applied and Environmental Microbiology. 81 (1), pp. 124-129. https://doi.org/10.1128/AEM.02803-14
[14] Fluit, A.C. (2012): Livestock-associated Staphylococcus aureus. Clinical Microbiology and Infection. 18 (8), pp. 735-744. https://doi.org/10.1111/j.1469-0691.2012.03846.x
[15] Verkade, E., Van Benthem, B., Den Bergh, M. K., Van Cleef, B., Van Rijen, M., Bosch, T., Kluytmans, J. (2013): Dynamics and determinants of Staphylococcus aureus carriage in livestock veterinarians: a prospective cohort study. Clinical Infectious Diseases. 57 (2), pp. 11-17. https://doi.org/10.1093/cid/cit228
[16] Fowoyo, P. T. - Ogunbanwo, S. T. (2017): Antimicrobial resistance in coagulase-negative staphylococci from Nigerian traditional fermented foods. Annals of Clinical Microbiology and Antimicrobials, 16 (4), pp. 2-7. https://doi.org/10.1186/s12941-017-0181-5
[17] Chaje, W., Zadernowska, A. C.-W., Nalepa, B., Sierpinska, M., - Łaniewska-Trokenheim, L. (2015): Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin e Phenotypic and genotypic antibiotic resistance. Food Microbiology, 46, pp. 222-226. https://doi.org/10.1016/j.fm.2014.08.001
[18] European Food Safety Authority - EFSA (2018): The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA journal. 16 (2), pp. 5182. https://doi.org/10.2903/j.efsa.2018.5182
[19] Aires-De-Sousa, M. (2016): Methicillin-resistant Staphylococcus aureus among animals: current overview. Clinical Microbiology and Infection. 23, pp. 373-380. https://doi.org/10.1016/j.cmi.2016.11.002
[20] Josten, M., Dischinger, J,. Szekat, C., Reif, M., Al-Sabti, N., Sahl, H. G., Parcina, M., Bekeredjian-Ding, I, Bierbaum, G. (2014): Identification of Agr-Positive Methicillin-Resistant Staphylococcus Aureus Harbouring the Class A Mec Complex by MALDI-TOF Mass Spectrometry. International Journal of Medical Microbiology. 304 (8), pp. 1018-1023. https://doi.org/10.1016/j.ijmm.2014.07.005
[21] Alksne, L., Makarova, S., Avsejenko, J., Cibrovska, A., Trofimova, J., Valciņa, O. (2020): Determination of methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis by MALDI-TOF-MS in clinical isolates from Latvia. Clinical Mass Spectrometry. 16, pp. 33-39. https://doi.org/10.1016/j.clinms.2020.03.001
[22] Pranada, A. B. - Bienia, M. - Kostrzewa, M. (2016): Optimization and Evaluation of MRSA Detection by Peak Analysis of MALDI-TOF Mass Spectra, in DGHM 2016 https://www.msacl.org/view_abstract/MSACL_2017_EU.php?id=305 Hozzáférés: 2021.01.08.
[23] Manukumar, H. M., Umesha, S. (2017): MALDI-TOF-MS based identification and molecular characterization of food associated methicillin-resistant Staphylococcus aureus. Scientific Reports. 7, 11414 pp. 1-16. https://doi.org/10.1038/s41598-017-11597-z
[24] Horvath, B., Peles, F., Szél, A., Sipos, R., Erős, Á., Albert, E., Micsinai, A. (2020): Molecular typing of foodborne coagulase-positive Staphylococcus isolates identified by MALDI-TOF-MS. Acta Alimentaria, An International Journal of Food Science. 49 (3), pp. 307-313. https://doi.org/10.1556/066.2020.49.3.9
[25] Clinical and Laboratory Standards Institute - CLSI (2019): Performance Standards for Antimicrobial Susceptibility Testing: Eighteenth Informational Supplement M100- S18. Wayne, PA, USA: CLSI.
[26] National Food Institute - NFI (2012): protocol for pcr amplification of meca, mecc (mecalga251), spa and pvl recommended by the eurl-ar 2st version. https://www.eurl-ar.eu/CustomerData/Files/Folders/21-protocols/279_pcr-spa-pvl-meca-mecc-sept12.pdf Hozzáférés: 2021.02.03.
[27] Thomas, J. C., Vargas, M. R., Miragaia, M., Peacock, S. J., Archer, G. L., Enright, M. (2007): Improved Multilocus Sequence Typing Scheme for Staphylococcus epidermidis. Journal of Clinical Microbiology. 45 (2), pp. 616-619. https://doi.org/10.1128/JCM.01934-06
[28] Josten, M., Dischinger, J,. Szekat, C., Reif, M., Al-Sabti, N., Sahl, H. G., Parcina, M., Bekeredjian-Ding, I, Bierbaum, G. (2014): Identification of Agr-Positive Methicillin-Resistant Staphylococcus Aureus Harbouring the Class A Mec Complex by MALDI-TOF Mass Spectrometry. International Journal of Medical Microbiology. 304 (8), pp. 1018-1023. https://doi.org/10.1016/j.ijmm.2014.07.005